We have discussed this issue before. We will discuss the similarities and differences with the current situation at the end.
Here we consider the problem :
Let $\tau$ be one of the roots of the equation
$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0 \tag{1}$
The other two roots are
$\tau_2=\frac{\sqrt{3}}{2}\cdot \tau^2-5\cdot \tau+\frac{\sqrt{3}}{2}\;,\;\;\tau_3=-\frac{\sqrt{3}}{2}\cdot \tau^2+4\cdot \tau+\frac{5\sqrt{3}}{2} \tag{2}$
SOLUTION CiP
From the fact that $\tau$ checks (1) we obtain some useful formulas in future calculations
$\tau^3=3\sqrt{3}\cdot \tau^2+3\cdot \tau -\sqrt{3} \tag{3}$
$\tau^4=30\cdot \tau^2+8\sqrt{3} \cdot \tau-9 \tag{4}$
$\frac{1}{\tau}=-\frac{\sqrt{3}}{3}\cdot \tau^2+3\cdot \tau+\sqrt{3} \tag{5}$
Indeed, $\tau^3-3\sqrt{3}\cdot \tau^2-3\cdot \tau +\sqrt{3}=0 \Rightarrow \tau^3=3\sqrt{3} \cdot \tau^2+3\cdot \tau-\sqrt{3}$, i.e. (3). Then $\tau^4=\tau \cdot \tau^3\overset{(3)}{=}$
$=\tau (3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})=3\sqrt{3}\cdot \tau^3+3\cdot \tau^2-\sqrt{3}\cdot \tau\overset{(3)}{=}3\sqrt{3}(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+3\cdot \tau^2-\sqrt{3}\cdot \tau=30\cdot \tau^2+8\sqrt{3}\cdot \tau-9$ i.e. (4). Finally, $\sqrt{3}=-\tau^3+3\sqrt{3}\cdot \tau^2+3\cdot \tau=\tau \cdot (-\tau^2+3\sqrt{3}\cdot \tau+3)\Rightarrow\frac{1}{\tau}=\frac{-\tau^2+3\sqrt{3}\cdot \tau+3}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot \tau^2+3\cdot \tau+\sqrt{3}$, i.e. (5).
From the first formula of Vieta $\tau_1+\tau_2+\tau_3=3\sqrt{3}$ we get
$$\tau_2+\tau_3=3\sqrt{3}-\tau \tag{6}$$
and from the third $\tau_1\cdot \tau_2\cdot \tau_3=-\sqrt{3}$ we deduce
$$\tau_2\cdot \tau_3=-\frac{\sqrt{3}}{\tau} \tag{7}$$
(6) and (7) show that $\tau_{2,3}$ are the roots of the quadratic equation
$t^2-(3\sqrt{3}-\tau) \cdot t-\frac{\sqrt{3}}{\tau}=0 \tag{8}$
Let's calculate its discriminant: $\Delta_2=(3\sqrt{3}-\tau)^2+\frac{4\sqrt{3}}{\tau}=$
$\overset{\color{Red}{!!!}}{=}27-6\sqrt{3}\cdot \tau+\tau^2+\frac{4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=\frac{\tau^4-6\sqrt{3}\cdot \tau^3+27\cdot \tau^2+4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=$
$\overset{(4)}{\underset{(3)}{=}}\frac{(30\cdot \tau^2+8\sqrt{3}\cdot \tau-9)-6\sqrt{3}(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+27 \tau^2+4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=\frac{3\cdot \tau^2-6\sqrt{3}\cdot \tau+9}{\color{Red}{\tau^2}}=\frac{(\sqrt{3}\cdot \tau-3)^{\color{Red}2}}{\color{Red}{\tau^2}}$
< Hallelujah, I got a perfect square !!! >
Let's do a little more calculation to make writing easier : $\pm\sqrt{\Delta_2}=\frac{\sqrt{3}\cdot \tau-3}{\tau}=$
$=(\sqrt{3}\cdot \tau-3)\cdot \frac{1}{\tau}\overset{(5)}{=}(\sqrt{3}\cdot \tau-3)\left (-\frac{\sqrt{3}}{3}\cdot \tau^2+3\cdot \tau+\sqrt{3}\right )=$
$=-\tau^3+\sqrt{3}\cdot \tau^2+3\sqrt{3}\cdot \tau^2-9\cdot \tau+3\cdot \tau-3\sqrt{3}=$
$\overset{(3)}{=}-(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+4\sqrt{3}\cdot \tau^2-6\cdot \tau-3\sqrt{3}=\color{Blue}{\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3}}$
!!! Remember this expression !!!
With these, the equation (8) has the roots
$\tau_{2,3}=\frac{3\sqrt{3}-\tau \pm \sqrt{\Delta_2}}{2}=\frac{3\sqrt{3}-\tau \pm (\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3})}{2} \tag{9}$
from where we obtain the expressions (2).
$\blacksquare$
REMARKS CiP
1. In the calculation of $\Delta_2$ that follows immediately after the equation (8), I made a trick so that at least the denominator would be a perfect square. Then I was lucky enough !! Compare with the Post << Not only God does not help, but also Allah does not "put you in trouble">>.
If in (7) we had used (5), obtaining $\tau_2\cdot \tau_3=\tau^2-3\sqrt{3}\cdot \tau-3$, then for the equation (8) we would have had $\Delta_2=(3\sqrt{3}-\tau)^2-4(\tau^2-3\sqrt{3}\cdot \tau-3)=39+6\sqrt{3}\cdot \tau -3\cdot \tau^2.$ Seeing this expression of $\Delta_2$ we wondered, as we did in the Post How? can we recognize a perfect square??, "how the hell" can we notice - compare with (9) - that
$$\color{Blue}{39+6\sqrt{3}\cdot \tau-3\cdot \tau^2=(\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3})^2}$$
Problem NOT solved yet.
2. The theoretical part about when and how such a statement is possible was exposed in the Post "The Rational Expressions for Roots of Cubic Polynomial". There are some differences, but only apparent.
First of all, that the polynomial $f=X^3-3\sqrt{3}\cdot X^2-3\cdot X+\sqrt{3}$ is not in $\mathbb{Q}[X]$ but in $\mathbb{Q}(\sqrt{3})[X].$
Then we need to make sure that the polynomial $f$ is irreducible. Maybe this is not that important, and I don't have an immediate justification at hand.
Third, its discriminant must be a perfect square (see Proposition in the Post). From $f$ we obtain the depressed cubic by substitution $t=u+\sqrt{3}$, obtainig the polynomial $u^3-12\cdot u-8\sqrt{3}$. Its discriminant, the same as for $f$, is $-4p^3-27q^2=4\cdot12^3-27\cdot(64\cdot3)=1\;728$ so equal to $3\cdot 576=(24\sqrt{3})^2$, hence perfect square in $\mathbb{Q}(\sqrt{3})$.
<end REM's>
Niciun comentariu:
Trimiteți un comentariu