به پست وبلاگ دیگرم هم سر بزنید
I've written about this number before here. Today I'm posting another problem.
" 17 384. Show that if $a+b+c=abc,\;(a,\;b,\;c \neq 0)$, then
$a\left (\frac{1}{b}+\frac{1}{c} \right )+b\left (\frac{1}{c}+\frac{1}{a} \right )+c\left ( \frac{1}{a}+\frac{1}{b}\right )+3=ab+bc+ca.$
Dan SECLEMAN, student, Craiova"
Solution CiP
We will do a calculation in which at some point we make the substitutions
$a+b=abc-c,\;\;\;b+c=abc-a,\;\;\;a+c=abc-b \tag{S}$
From left to right, we march : $a(\frac{1}{b}+\frac{1}{c})+b(\frac{1}{c}+\frac{1}{a})+c(\frac{1}{a}+\frac{1}{b})+3=$
$=\underline{\underline{\frac{a}{b}}}+\frac{a}{c}+\frac{b}{c}+\underline{\frac{b}{a}}+\underline{\frac{c}{a}}+\underline{\underline{\frac{c}{b}}}+3=\frac{1}{a}\underline{(b+c)}+\frac{1}{b}\underline{(\underline{a+c})}+\frac{1}{c}(a+b)+3\overset{(S)}{=}$
$\underset{(S)}{=}\frac{1}{a}(abc-a)+\frac{1}{b}(abc-b)+\frac{1}{c}(abc-c)+3=(bc-1)+(ac-1)+ab-1)+3=$
$=ab+bc+ca.$ QED
Niciun comentariu:
Trimiteți un comentariu