vineri, 20 octombrie 2023

GAZETA MATEMATICĂ Seria B N0 9/2023

 Faceti click pe imagine pentru descarcare.


Vezi ERATA

miercuri, 27 septembrie 2023

An Elementary Demonstration of FERMAT's Great Theorem

 

               "GREAT" or "LATEST"?  This is the question to which you can see an answer in the book 

EDWARDS H. M. - FERMAT’s LAST THEOREM : A Genetic Introduction in Algebraic Number Theory, 

.


                The Romanian mathematician Vasile Lucilius published a book that cannot be found anywhere:

"EIGHT MAJOR THEORETICAL BREAKTHROUGHS IN THE SUPERIOR MATHEMATICS"

STEF Publishing House, Iași, 2007.

 On two pages (Chapter 6) the author demonstrates, with elementary means, that the equation

$$x^p+y^p=z^p \;,p\geqslant 5\;prime\;number$$

 does not admit solutions in whole numbers.

vineri, 22 septembrie 2023

GAZETA MATEMATICĂ Seria B N0 6-7-8/2023

 Faceti click pe imagine pentru descarcare.

Pentru o Colectie (mai) Larga apasati aici


Vezi ERATA


joi, 21 septembrie 2023

Tungkol sa pagkakapantay-pantay $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1$ // About this beautiful identity

 (Filipineza)

          The following Problem was published on Facebook_page Canadian Mathematical Society / Société mathématique du Canada : (in bilingual presentation, as usual)


A beautiful (but somewhat unfinished) solution was presented by Regragui El Khammal (الركراكي الخمال).

          My solution is the following.


ANSWER CiP

For all positive integers satisfying inequality

$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\;<\; 1 \tag{I}$$

the inequality in the statement 

$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\;\leqslant\;\frac{41}{42} \tag{ S}$$

 actually occurs. The sign "$=$" is obtained only for

 values $2,\; 3,\; 7\;$ for $a,\; b,\; c\;$ (in any order).


SOLUTION CiP

                       Let us first look for the triplets $(a,b,c)\in \mathbb{Z_+}\times \mathbb{Z_+}\times \mathbb{Z_+}$

 satisfying the inequality (I) and additionally verifying the condition

$$1\leqslant a \leqslant b \leqslant c \tag{C}\;.$$

Then the other triplets satisfying the inequality (I) are obtained by doing all permutations of those found.

               Let us then note the equality

$$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\;. \tag{E}$$               

          We will study three cases : I-III.

          I. If $a\geqslant 2$ and $b\geqslant 3$ then inequality (I) is satisfied for "sufficiently large" $c$.(Anyway $c \geqslant 7$, taking into account the equality (E); precisely $c \geqslant \left [\frac{1}{1-\frac{1}{a}-\frac{1}{b}}\right]+1$,$[.]$ being the floor function , but this precision is not necessary in solving.) In this case we have

$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leqslant \frac{1}{2}+\frac{1}{3}+\frac{1}{7}=\frac{41}{42}.$$

We have concluded (S). Equality is reached only for $a=2,\;b=3,\;c=7\;$, otherwise the above inequality is strict.

          II. The values $a=2\;$ and $b=2\;$ contradict inequality (I), so this case is not possible.

          III. Neither can $a=1\;$ because of the same inequality (I).


      Example: for $a=b=3$ we have $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}+\frac{1}{3}+\frac{1}{c}$ and this last expression is $<1$ for $c\geqslant 4$. But then

$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leqslant \frac{2}{3}+\frac{1}{4}=\frac{11}{12}=\frac{77}{84}=\frac{82}{82}=\frac{41}{42}\;;$$

we get a strict inequality.

$\blacksquare$