Faceti click pe imagine pentru descarcare.
joi, 30 iunie 2022
luni, 27 iunie 2022
luni, 20 iunie 2022
MATEMATIKAI LAPOK 7, 8, 9, 10, 11-12/1986
A dokumentum letöltéséhez kattintson a kívánt képre
marți, 14 iunie 2022
A Minimal Property of Monotonic Functions
"Monotonic" has here the meaning of "increasing" or "decreasing".
Problem 20 475 (for grade 12, published in GMB_6--1985) solved in GMB_6--1986, page 212 :
Solution
We will show a seemingly simpler inequality :
If $\;g\;:\;[0,1]\;\rightarrow \;\mathbb{R}$ is increasing, then
$$\int_0^1\left | g(t)-c \right | dt\;\geqslant\;\int_0^1\left | g(t)-g\left (\frac{1}{2}\right ) \right | dt\;,\;\;(\forall )c\in \mathbb{R}. \tag{1}$$
If we demonstrated (1), then taking $\;g(t)=f\left (a+(b-a) \cdot t \right )$, we have $g$ is increasing if $f$ is increasing, so
$$\int_0^1 \left | f \left ( a+(b-a) \cdot t \right )-c \right | dt \geqslant \int_0^1 \left | f \left ( a+(b-a) \cdot t \right ) -f \left ( \frac{a+b}{2} \right ) \right | dt.$$
In the above integrals we substitute
$$\begin{cases}x=a+(b-a)\cdot t \;,\;\;t=\frac{x-a}{b-a}\\t=0\;\leftrightarrow \;x=a\;,\;\;t=1\;\leftrightarrow \;x=b \end{cases}$$
and we get
$$\int_a^b \left |f(x)-c \right | \cdot \frac{dx}{b-a}\geqslant \int_a^b \left | f(x)-f\left ( \frac{a+b}{2} \right ) \right | \cdot \frac{dx}{b-a}$$
which multiplied by $b-a >0$ leads us to the original statement.
To prove (1) we write
$$\int_0^1\left | g(x)-c \right |dx=\int_0^{\frac{1}{2}}\left |g(x)-c \right |dx+\int_{\frac{1}{2}}^1\left | g(x)-c \right |dx.\tag{2}$$
In the last integral of the (2) we replace $\begin{cases}x=u+\frac{1}{2}\\x=\frac{1}{2}\;\to u=0\\x=1\;\to u=\frac{1}{2}\end{cases}$
$\int_{\frac{1}{2}}^1\left |g(x)-c \right | dx\;\underset{x=u+\frac{1}{2}}{==}\;\int_0^{\frac{1}{2}}\left |g(u+\frac{1}{2})-c \right |du=\int_0^{\frac{1}{2}}\left |g(x+\frac{1}{2})-c \right |dx$, so (2) is written
$$\int_0^1 \left |g(x)-c \right |dx=\int_0^{\frac{1}{2}}\left | g(x)-c \right |dx+\int_0^{\frac{1}{2}}\left |g(x+\frac{1}{2})-c \right |dx. \tag{3}$$
We have $g(x+\frac{1}{2})-g(x)\;\underset{g\nearrow}{=}\left |g(x+\frac{1}{2})-g(x) \right |=\left |\left (g(x+\frac{1}{2})-c \right )-(g(x)-c) \right |\;\;\underset{|a-b|\leqslant |a|+|b|}{\leqslant}\;\;$
$$\leqslant \left |g(x+\frac{1}{2})-c \right |+|g(x)-c|$$
and taking the integral we get
$$\int_0^{\frac{1}{2}}\left ( g(x+\frac{1}{2})-g(x) \right ) dx \leqslant \int_0^{\frac{1}{2}} \left | g(x+\frac{1}{2})-c \right |dx+\int_0^{\frac{1}{2}} \left | g(x)-c \right |dx \underset{(3)}{=}\int_0^1 |g(x)-c|dx.$$
So we have inequalities :
$$\int_0^1 |g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}\left (g(x+\frac{1}{2})-g(x) \right )dx\;\;\;\Leftrightarrow$$
$$\Leftrightarrow \;\int_0^1 |g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}\left \{ \left [g(x+\frac{1}{2})-g(\frac{1}{2}) \right ]+ \left [g(\frac{1}{2})-g(x) \right ] \right \}dx \;\Leftrightarrow$$
$$\Leftrightarrow \;\int_0^1|g(x)-c|dx \geqslant \int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx+\int_0^{\frac{1}{2}}[g(\frac{1}{2})-g(x)]dx.\tag{4}$$
The second integral in (4) becomes, with the substitution $\begin{cases}v=x+\frac{1}{2}\\x=0\leftrightarrow v=\frac{1}{2}\\x=\frac{1}{2}\leftrightarrow v=1\end{cases}$
$\int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx\;\overset{v=x+\frac{1}{2}}{=}\;\int_{\frac{1}{2}}^1[g(v)-g(\frac{1}{2})]dv=\int_{\frac{1}{2}}^1[g(x)-g(\frac{1}{2})]dx,$
and, because on the set $[\frac{1}{2},1]$ we have $g(x)-g(\frac{1}{2})=|g(x)-g(\frac{1}{2})|$, we can't write
$$\int_0^{\frac{1}{2}}[g(x+\frac{1}{2})-g(\frac{1}{2})]dx=\int_{\frac{1}{2}}^1\left |g(x)-g(\frac{1}{2})\right |dx.$$
With the one above, and with the fact that on the set $[0,\frac{1}{2}]$ we have $g(\frac{1}{2})-g(x)=|g(\frac{1}{2})-g(x)|$, the relationship (4) is written
$\int_0^1|g(x)-c|dx \geqslant \int_{\frac{1}{2}}^1\left |g(x)-g(\frac{1}{2})\right |dx+\int_0^{\frac{1}{2}}\left |g(x)-g(\frac{1}{2})\right |dx=\int_0^1\left |g(x)-g(\frac{1}{2}) \right | dx,$
and (1) is demonstrated.
Let now be $f$ decreasing function. Then $-f$ is increasing and for $-f$ we apply the demonstrated property, taking the constant equal to $-c$ :
$$\int_a^b\left | (-f(x))-(-f\left (\frac{a+b}{2} \right ))\right | dx \leqslant \int_a^b\left |(-f(x))-(-c)\right |dx\;\Leftrightarrow$$
$$\Leftrightarrow\;\int_a^b\left |f\left (\frac{a+b}{2}\right )-f(x) \right |dx\leqslant \int_a^b|c-f(x)|dx$$
and inequality results again.
$\blacksquare$
duminică, 12 iunie 2022
A S T R A $\;\;\;\;$ M A T E M A T I C Ă - Una revista con una existencia... efímera
I only have the Volume 1, numbers 1 - 5, and obviously(!) the number Zero. I don't know if there were too many.
Although the ad on page 29 says the numbers 1,2,3 for 1991 are ready to be printed,
I am not aware that any numbers other than those from 1990 have appeared. See also a short history of the University "LUCIAN BLAGA" from SIBIU/ROmania where you can see, surrounded by me, the statement that only in 1990 the magazine appeared. You can see these numbers in DRIVE.
sâmbătă, 11 iunie 2022
MATEMATIKAI LAPOK 6/1986 - Remélhetőleg lovagi csata román és magyar matematikusok között.
Remélhetőleg lovagi csata román és magyar matematikusok között.
Tekintse meg a beszkennelt magazint itt.
Meghívjuk Önt, hogy hasonlítsa össze a hasonló román nyelvű GAZETA MATEMATICĂ számmal.
Az első, ami első pillantásra megdöbbentő, a két folyóirat azonos oldalszáma.
Valószínűleg ez volt az uralkodó intézmények parancsa...
A román nyelvű kiadás tartalmának egy részét teljes egészében magyarra fordították:
- LOGIKA ÉS GEOMETRIA, Teleman K. cikke;
- Helyi Matematikai Olimpián adott feladatok megoldása, 1986. február 23., Giurgiu megye;
- Problémák az elsődleges ciklussal (eltérő számozással);
- NMO problémák középiskolások számára;
- Az NMO és az BMO előkészítő kérdései;
- Az éves Megoldóverseny kérdései.
A „Problems for middle school” és a „Problems for high school” címeket szinte teljes egészében lefordították. A feladatok eredeti számozása megmaradt. Az első részben csak az E: 8870 (5. osztály) és E: 8886 (8. osztály) számokat cserélték fel két azonos szintű feladattal néhány magyar szerző. A második címsorban a 20 787 (a 9. osztályhoz), a 20 793, 20795 (a 10. osztályhoz) és a 20 804 (a 11. osztályhoz) feladatokat másokkal helyettesítették... Valószínűleg az akkori politikai viszonyok nem engedtek többet!
A megoldott feladatokat tartalmazó szakaszok (Gimnázium, ill. Líceum) mutatják a legnagyobb eltéréseket. A magyar kiadásban csak néhány magyar diák megoldása jelenik meg.
A különböző matematikai versenyek egyéb számai, vagy a Számítógépes problémák a két kiadvány különböző számában jelennek meg.
Néhány rövidebb vagy kisebb matematikai jegyzet kimaradt a román nyelvű kiadásból. Ehelyett, vagy talán éppen ezért, a magyar kiadásban egy brassói magyar szerző gyönyörű hétoldalas cikke található, bizonyos számtani függvényekről az osztók összegével kapcsolatban... Kár, hogy nem láttam románul .
A jövőben közzé fogok tenni ezen a blogomon és a többi problémámban.
Viszlát a matematika iránt érdeklődőknek,
CiP
ABSOLVIREA FACULTATII
Festivitate in ziua de Vineri, 10 IUNIE 2022. (Intr-o sala la Facultatea de Medicina din SIBIU)
Poate revin si cu niste fotografii...
vineri, 10 iunie 2022
joi, 9 iunie 2022
Un trapezio non è diverso
Here we show and solve Problem 4, page 3 (for grade 7), submitted to a regional Mathematics Competition.
In translation, thanks to Mr DeepL:"Let ABCD be an isosceles trapezoid with $AB \parallel CD,\;AB>CD$.
We denote by $O$ the point of intersection of the diagonals of the trapezoid and let $M, N$ and $P$ be the middles of the line segments $[OC], [OB]$ and $[AD]$ respectively. Knowing $PM=MN$, find the measures of the angles of the triangle $PMN$."
ANSWER CiP
$60^{\circ}$ - the triangle $PMN$ is equilateral
Solution CiP
$MN$ is mid-segment/midline of triangle $OBC$ and we have $MN \overset{\parallel}{=}\frac{BC}{2}$. But $BC=AD$, so
$$MN\;=\;\frac{AD}{2}. \tag{1}$$
Because $PM=MN$, we also have$$MP=\frac{AD}{2}. \tag{2}$$
But in the triangle $AMD$, the median $MP$ of side $AD$ is half that side. So $AMD$ is a right triangle with hypotenuse $AD$.
Since we have $DM \perp MA$, then in the triangle $CDO$(initially isosceles with $OC=OD$) the median $DM$ is also altitude, so it is still isosceles with $DO=DC$; ultimately it is equilateral triangle.
Because in any trapezoid the triangles $AOB$ and $COD$ are similar, it follow that $ABO$ is equilateral triangle too. Then its median $AN$ is also its altitude, so we have $AN \perp ND$.
Now we have the right triangle $ADN$ in which the median $NP$ of hypotenuse is
$$NP=\frac{AD}{2}.\tag{3}$$
From relations (1), (2), (3) it follows that the triangle $PMN$ is equilateral, so it has all three angles equal to $60^{\circ}$.
$\blacksquare \;\;\;\blacksquare$
miercuri, 8 iunie 2022
A NECESSARY_ and_SUFFICIENT condition of tangency to the circle
Given a triangle $ABC$,
a necessary and sufficient condition for the line $CD$ to be tangent
to the circle circumscribing the triangle is $\angle{BAC} \equiv \angle{BCD}.$
The condition is necessary : $CD$ - is tangent to circle $\Rightarrow\;\angle{BAC}=\angle{BCD}.$
Indeed, we have the equalities between the measures of angles and arcs of the circle:
$$\widehat{BAC}=\frac{\overset{\frown}{BC}}{2},\;\;\widehat{BCD}=\frac{\overset{\frown}{BC}}{2}$$
hence the conclusion.
The condition is sufficient : $\angle{BAC}=\angle{BCD}\;\Rightarrow$ $CD$ - is tangent to the
circle circumscribing the triangle.
For demonstration we take $O$ the center of the circumscribed circle.
If the point $O$ is inside the triangle, then we write the relation
$$\widehat{AOB}+\widehat{BOC}+\widehat{COA}=180^{\circ}.$$
We show the proof when point $O$ is outside the triangle. In this case we have the relationship
$$\widehat{BOA}+\widehat{AOC}=\widehat{BOC}.$$
From the isosceles triangles $AOB\;(OA=OB)$ and $AOC\;(OA=OC)$ it follows
$$\widehat{BOA}=180^{\circ}-2 \cdot \widehat{BAO},\;\;\widehat{AOC}=180^{\circ}-2 \cdot \widehat{CAO}$$
so $\widehat{BOC}=360^{\circ}-2 \cdot (\widehat{BAO}+\widehat{CAO})=360^{\circ}-2 \cdot \widehat{BAC}.$
But in the isosceles triangle $BOC$ we have
$$\widehat{BCO}=\frac{180^{\circ}-\widehat{BOC}}{2}=\frac{2\cdot \widehat{BAC}-180^{\circ}}{2}=\widehat{BAC}-90^{\circ}.$$
Using the hypothesis $\widehat{BAC}=\widehat{BCD}$ results $$\widehat{OCD}=\widehat{BCD}-\widehat{BCO}=\widehat{BAC}-(\widehat{BAC}-90^{\circ})=90^{\circ},$$
so the line $CD$ is perpendicular to the radius $OC$ of the circle circumscribing the triangle $ABC$, i.e. it is tangent to this circle.
$\blacksquare$
As an application of this property we solve the following problem:
(from the GMB exercise supplement, from October 2009 (page 3; proposed for 7th grade at a student summer camp). In translation, thanks to Mr DeepL
"The median $AM$ of the acute triangle $ABC$ intersects the circle
circumscribing the triangle a second time at point $D$. If $E$ is the symmetric
point of $A$ with respect to $M$, then show that the line $BC$ is the common
tangent of the circumscribed circles of triangles $BDE$ and $CDE$."
For demonstration, let's take a simplified figure.
From $MB=MC$ and $MA=ME\;\;\Rightarrow\;BACE$ - parallelogram. We have equals angles:$$\angle{CAE} \equiv \angle{AEB}\;\;\;\angle{BAE}\equiv \angle {AEC},$$
or written
$$\widehat{CAD}=\widehat{DEB},\;\;\;\widehat{BAD}=\widehat{DEC}.\tag{1}$$
We still have the equalities between angles and arcs:
$$\widehat{CAD}=\frac{\overset{\frown}{CD}}{2}=\widehat{CBD,}\;\;\;\widehat{BAD}=\frac{\overset{\frown}{BD}}{2}=\widehat{BCD}. \tag{2}$$
From (1) and (2) follows
$\widehat{DBC}=\widehat{DEB}$ hence $BC$ is tangent to the circle circumscribed of $\Delta BDE,$
$\widehat{DCB}=\widehat{DEC}$ hence $CB$ is tangent to the circle circumscribed of $\Delta CDE$.
$\blacksquare\;\blacksquare$