En, p 415........................................................................................................................
Fr, p 418.....................................................................................................................
ANSWER CiP
Equality $\Leftrightarrow x_{1}=\cdots=x_{n}=16$
SOLUTION CiP
LEMMA If $0\leqslant x <1$ then
(1) $\frac{1}{1-x}\geqslant 1+4x^{2}$.
Equality if and only if $x=0$ or $x=\frac{1}{2}$.
Proof of Lemma
We perform simple calculation
$\frac{1}{1-x}-1-4x^{2}=\frac{x(1-2x)^{2}}{1-x} \geqslant 0$.
The conclusions result.
$\square $(LEMMA)
Let $f(x)=\frac{1}{8-\sqrt{x}}$ where $0<x<64$. If we write
$f(x)=\frac{1}{8} \cdot \frac{1}{1-\frac{\sqrt{x}}{8}} \geqslant \frac{1}{8} \cdot(1+4(\frac{\sqrt{x}}{8})^{2})$
where I applied the Lemma for $\frac {\sqrt{x}}{8}$ instead of $x$, then it turns out
(2) $f(x) \geqslant \frac{1}{8}+\frac{x}{128}$.
We put in the formula (2), one by one $x=x_{1}, x_{2}, \cdots x_{n}$ and add the obtained results.
So we have
$\sum_{i=1}^{n}f(x_{i})\geqslant \sum_{i=1}^{n}\left ( \frac{1}{8}+\frac{x_{i}}{128} \right )=\frac{n}{8}+ \frac{\sum_{i=1}^{n}x_{i}}{128}=\frac{n}{8}+\frac{16 \cdot n}{128}=\frac{n}{8}+\frac{n}{8}=\frac{n}{4}$
what needed to be shown.
$\blacksquare$
The equal sign occur when in (2) eqal signs occur, i.e. $\frac{\sqrt{x_{i}}}{8}=\frac{1}{2}$, so all $x_{i}=16.$
Raspunsul de confirmare
Thank you for sending us your solution for one of the problems found
in
Crux Mathematicorum. Our file server has received your submission
and the appropriate editor will be reviewing it in sequence or as
needed.
Below is a receipt confirming the submission you sent us.
Tracking Number: 10788
Received: Mon Oct 12 16:50:40 2020
From: Ciobanu Petre
Scoala Gimnaziala "Samuil Micu" SADU
Sibiu, Romania
Email:
ptr.ciobanu@gmail.com
Type: Solve a
Crux (Numbered) Problem
(problem 4574)
Files:
yynwlsnl.pdf
Comments:
See my Blog
https://ogeometrie-cip.blogspot.com/2020/10/problem-4574-crux-mathematicorum-vol-46.html
Crux Mathematicorum <crux@cms.math.ca> |
| lun., 12 oct., 19:52 |
|
|
|
|
=============
Added April 7, 2021
See their solution, V47n03, pages 159-160 (they give two solutions)
The first solution starts from identity
$\frac{1}{1-t}=1+t^2+t+\frac{t^3}{1-t}$
and for the interval $t\in ( 0,\;1 )$ we have
$t+\frac{t^3}{1-t}\geq 3t^2\;(\Leftrightarrow t(2t-1)^2 \geq 0)$.
N.CiP In fact, it is equivalent to inequality (1).
The second solution uses that for $x \in (0, \; 64)$ we have
$\frac{1}{8-\sqrt{x}} \geq \frac {x+16}{128}\; \Leftrightarrow \sqrt{x}(\sqrt{x}-4)^2 \geq 0.$
N. CiP It is essentially the inequality (2).
= end added=