Vezi aici
In the magazine
in Volume 2 Number 2 (February, 1976) page 25
Solution CiP
The numbers $a,b,c$ can be considered as the roots of a third degree equation
$$x^{3}-px^{2}+qx-r=0.$$
With the numbers $x_{1}=b-c,\;x_{2}=c-a,\;x_{3}=a-b$ we will form a third degree equation that they check. We will first calculate
$$x_{1}+x_{2}+x_{3}=0$$
$$x_{1}\cdot x_{2}+x_{1}\cdot x_{3}+x_{2} \cdot x_{3}=$$
$=(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)=bc+ca+ab-a^{2}-b^{2}-c^{2}=$
$$=3\cdot q-p^{2}\overset{\underset{\mathrm{def}}{}}{=}Q$$
the last equality being in accordance with the Vieta's formulas,
$$x_{1} \cdot x_{2} \cdot x_{3}=(b-c)(c-a)(a-b)\overset{\underset{\mathrm{def}}{}}{=}R.$$
Again with the Viète's formulas (for those who prefer the original French name François Viète instead of the Latinised form of his name, "Franciscus Vieta"), the numbers $b-c,\;c-a,\;a-b$ will be the roots of the equation
$$x^{3}-0\cdot x^{2}+Q\cdot x-R=0.$$
But then $\frac{1}{x_{1}},\;\frac{1}{x_{2}},\;\frac{1}{x_{3}}$ will be the roots of the "written backwards" equation
$$R\cdot x^{3}-Q\cdot x^{2}-1=0$$
and the Vieta's formulas give
$\sum_{cycl}\frac{1}{x_{1}} =\frac{Q}{R}$, $\sum_{cycl} \frac{1}{x_{1}}\cdot \frac{1}{x_{2}}=0$.
Now $\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}}+\frac{1}{(a-b)^{2}}=\sum \frac {1}{x_{1}^{2}}=(\sum \frac {1}{x_{1}})^{2}-2 \cdot \sum \frac {1}{x_{1}\cdot x_{2}}=(\frac{Q}{R})^{2}-2\cdot 0=$
$$=(\sum_{cycl} \frac {1}{b-a})^{2}$$
that is, a square number.
$\blacksquare$
The statement of the problem
En(p. 436)
Fr(p. 437)
ANSWER CiP
Smallest prime factor 3; largest prime factor 673
Solution CiP
According to the formula
$1+2+\cdot \cdot \cdot +n=\frac{n(n+1)}{2}$
the number is
$M=2(1+2+\cdots +2018)+2019=2018 \cdot 2019+2019=2019^{2}$.
Because 2019 has the decomposition into prime factors $3 \cdot 673$ we get the answer.
$\blacksquare$
=======================================================================
Added May 19, 2021
Good answer see V47n04, pages 176-177
And they get the result $M=2019^2$ and after applying the divisibility with 3 $(2+0+1+9=12=4 \cdot 3 )$ they obtain $2019^2=3^2 \cdot 673^2$. They further show that 637 is a prime number: check the divisibility criterions with 2, 3, 5 and 11; for 7, 13, 17, 19 and 23 (because $25^2=625 < 673< 676=26^2$) apply the division with the remainder ...
=end added=