Vezi in DRIVE
Vezi ERATA
The problem is proposed for the 5th grade, at page 6.
" Determine the natural number $n$ for which:
$$2^{n+11}-2^{n+6}+2^{n+5}+2^{n+2}-2^n=2019."$$
ANSWER CiP
$$n=0;$$
Indeed: $2^{11}-2^6+2^5+2^2-2^0= 2048-64+32+4-1=2019.$
Solution CiP
If the number $n>0$, then all the powers of $2$ on the left side of the equation are even numbers, so the result of their sum is an even number, so it cannot be equal to $2019.$
All that remains is to check the number $n=0$, and it is found that he verifies the equation.
$\blacksquare$
REMARKS CiP
$1^R$. We will use the following formula
$$2^k\;+\;2^k\;=\;2^{k+1},\;\;\;2^{k+1}-2^k=2^k,\;\;k=0,1,2,...$$
$2^R$. The number in base ten $2019$ is written in base $2$ as follows:
$2019_{(10)}=111\;1110\;0011_{(2)}$
$\Leftrightarrow\;\;2019=2^{10}+2^9+2^8+2^7+2^6+2^5+2^1+2^0.$
As it is known, this writing is unique, there is no one like it. Replacing the terms $2^k$ with the second formula in Remark $1^R$, with the exception of $2^5$, we have:
$2019=(2^{11}-2^{10})+(2^{10}-2^9)+(2^9-2^8)+(2^8-2^7)+(2^7-2^6)\;\underline{+2^5}\;+(2^2-2^1)+(2^1-2^0).$
If we open all the parentheses and keep in mind that $x-y+y=x,\;\;x,y,z \in \mathbb{N}$, we get:
$2019=2^{11}-2^6+2^5+2^2-2^0.$
$3^R$. The given equation can still be written, also with the formulas from the mentioned remark:
$2^{n+10}+2^{n+10}-2^{n+6}+2^{n+5}+2^{n+1}+2^{n+1}-2^n=2019$
$\Leftrightarrow\;2^{n+10}+(2^{n+10}-2^{n+9})+(2^{n+9}-2^{n+8})+(2^{n+8}-2^{n+7})+(2^{n+7}-2^{n+6})+2^{n+5}+(2^{n+2}-2^{n+1})+(2^{n+1}-2^n)=2019$
$\Leftrightarrow\;2^{n+10}+2^{n+9}+2^{n+8}+2^{n+7}+2^{n+6}+2^{n+5}+2^{n+1}+2^n=2019,$
and considering the unique writing in base $2$, we obtain the only possibility $n = 0.$
$\square\;\square\;\square$
Harnicul Scamatorist LIVU PODGORNEI face o lucrare care nu poate fi pretuita, in scanarea unor carti de matematica din vechi timpuri.
Link-ul direct, atat cat va exista, este
Cartea arata "pe dinafara" asa
Succes la "explorarea pe dinauntru".Puteti descarca si de aici.
See link, obtained from www.molympiad.net.
We will formulate the following related problem:
"The bisector of angle $B$ of a parallelogram $ABCD$ meets itd diagonal $AC$ at $E$, and the external bisector of angle $B$ meets line $AD$ at $F$.
Prove that the right segments $CE$ and $FM$ are parallel and congruent if and only if $BC=2\cdot AB$."
Proof CiP of Original Problem
First of all, notice that from the equal angles:
$\angle B'BF\equiv \angle BFA$, and $\angle CBE \equiv \angle AGC$ (as angles formed by the parallel lines $BC$ and $AD$ with the transversals $BF$ and $BG$ respectively). And because the bisectors form equal angles, we have $\angle B'BF \equiv \angle FAB$, $\angle CBG \equiv \angle ABG$, so we get some isosceles triangles, from where it come
$$ AB=AF=AG\;.$$
We will solve the original problem by the vector method.
Denote with $L=BC,\;l=AB$. The bisector theorem $BE$ in the triangle $ABC$
$$\frac{AE}{EC}=\frac{AB}{BC}=\frac{l}{L}$$
allows us to find out
$$\overrightarrow{BE}=\frac{L\cdot \overrightarrow{BA}+l\cdot \overrightarrow{BC}}{L+l}.\tag{1}$$
(Indeed, $L\cdot \overrightarrow{AE}=l\cdot \overrightarrow{EC}$, or $L(\overrightarrow{BE}-\overrightarrow{BA})=l(\overrightarrow{BC}-\overrightarrow{BE})$...)
We also obtain from the bisector theorem $AE=\frac{l}{L+l}\cdot AC$, so $\overrightarrow{AE}=\frac{l}{L+l}\overrightarrow {AC}=\frac{l}{L+l}(\overrightarrow{BC}-\overrightarrow{BA})$, hence
$$\overrightarrow {AE}=\frac{l}{L+l}\overrightarrow{BC}-\frac{l}{L+l}\overrightarrow{BA}.$$
Further, because $AF=AB$, we have $\overrightarrow{AF}=-\frac{l}{L}\cdot \overrightarrow{AD}=-\frac{l}{L}\overrightarrow{BC}$, and now we calculate $\overrightarrow{EF}=\overrightarrow{AF}-\overrightarrow{AE}=-\frac{l}{L}\overrightarrow{BC}-(\frac{l}{L+l}\overrightarrow{BC}-\frac{l}{L+l}\overrightarrow{BA}),$ so
$$\overrightarrow{EF}=-\frac{2Ll+l^2}{L(L+l)}\overrightarrow{BC}+\frac{l}{L+l}\overrightarrow{BA}.\tag{2}$$
Also $\overrightarrow{CM}=\overrightarrow{BM}-\overrightarrow{BC}=\frac{1}{2}\overrightarrow{BE}-\overrightarrow{BC}\;\overset{(1)}{=}\frac{L}{2(L+l}\overrightarrow{BA}+\frac{l}{2(L+l)}\overrightarrow{BC}-\overrightarrow{BC}$, getting
$$\overrightarrow{CM}=-\frac{2L+l}{2(L+l)}\overrightarrow{BC}+\frac{L}{2(L+l)}\overrightarrow{BA}.\tag{3}$$
From relations $(2)$ and $(3)$ we see that
$\overrightarrow{EF}=\frac{l}{L}[-\frac{2L+l}{L+l}\overrightarrow{BC}=\frac{l}{L+l}\overrightarrow{BA}]=\frac{l}{L}\cdot 2\overrightarrow{CM}$, so
$$\overrightarrow{EF}=\frac{2l}{L}\overrightarrow{CM}.\tag{4}$$
Relation $(4)$ states that $EF\;\parallel\;CM$.
$\blacksquare$
REMARK CiP
Also from the formula $(4)$ we deduce that
$EF \;\overset{\parallel}{=}\;CM\;\;\Leftrightarrow\;\;2l=L\;\;\Leftrightarrow\;\;EFMC-parallelogram\;\;\Leftrightarrow\;\;CE\;\overset{\parallel}{=}\;MF$
and we get our reformulation of the problem.
$\blacksquare\;\blacksquare$
We are looking for the extreme values of some rational fractions of form
$$\frac{Ax^2+2Bx+C}{ ax^2+2bx+c}.$$
We find in the book Daniel SITARU - Fenomen Algebric
PROBLEM #1, page 27
" Find the minimum of the expression
$$E=\frac{4ab-11a^2-14b^2}{3(a^2+b^2)}\; ;\;a,b \in \mathbb{R^*}."$$
ANSWER CiP
We will find out more, both the minimum and the maximum of the expression.
$$-5=E(a,-2a)\leqslant E(a,b) \leqslant E(2b,b)=-\frac{10}{3}\;\;,a,b \in \mathbb{R^*}.$$
Solution CiP
The number $\lambda$ is a value of the fraction $E$ if, and only if
" there are two numbers $a$ and $b$ such that $\lambda =E(a,b)"
$$\Leftrightarrow \; \exists \;a,b \in \mathbb{R^*}\;such\; that\;\lambda =\frac{4ab-11a^2-14b^2}{3(a^2+b^2)}$$
$$\Leftrightarrow\;\exists\;a,b \in \mathbb{R^*}\;such\;that\;4ab-11a^2-14b^2=3\lambda a^2+3 \lambda b^2$$
$$\Leftrightarrow\;\exists\;a,b \in \mathbb{R^*}\;such\;that\;(3\lambda+11)a^2-4ab+(3\lambda+14)b^2=0$$
$$\Leftrightarrow\; t=\frac{a}{b}\;is\;a\;root\;of\;the\;equation\;(3\lambda+11)t^2-4t+(3\lambda+14)=0 \tag{1}$$
$\Leftrightarrow\;\Delta _t\;\geqslant 0,\tag{2}$
where $\Delta _t$ is the half-discriminant to the equation (1),
$\Delta _t=4-(3\lambda+11)(3\lambda+14).$
But $(2)\;\Leftrightarrow\;9\lambda ^2+75 \lambda+150 \leqslant 0\;\Leftrightarrow\;3\lambda^2+25\lambda+50\leqslant 0\;\Leftrightarrow\;\lambda \in [-5;-\frac{10}{3}]$.
Here, the ends of the range $[-5;-\frac{10}{3}]$ are the roots of the equation $3\lambda^2+25\lambda+50=0.$
Result that we have $\lambda _{min}=-5,\;\lambda _{max}=-\frac{10}{3}.$
Further,
$E(a,b)=-5\;\Leftrightarrow\;-4a^2-4ab-b^2=0\;\Leftrightarrow\;-(2a+b)^2=0\;\Leftrightarrow\;b=-2a$,
and $E(a,b)=-\frac{10}{3}\;\Leftrightarrow\;a^2-4ab+4b^2=0\;\Leftrightarrow\;(a-2b)^2=0\;\Leftrightarrow\;a=2b.$
We got the answer.
$\blacksquare$
Solution #2
(the authors' solution, only for the minimum, completed by CiP for the maximum)
See page 72.
Completed by CiP: $E=\frac{-10a^2-10b^2-a^2+4ab-4b^2}{3(a^2+b^2)}=-\frac{10}{3}-\frac{(a-2b)^2}{3(a^2+b^2)}\leqslant -\frac{10}{3}$, $max\;E=-\frac{10}{3}$ for $a-2b=0.$
$\blacksquare$