Processing math: 100%

marți, 25 februarie 2025

Não importa o quanto as Áreas se escondam, ainda as encontraremos // No matter how much the Areas hide, we will still find them

           Based on a LinkedIn Post

Then I found a similar one
I thought of a general formula, resulting in the following:

          PROBLEM In the parallelogram ABCD in the figure below, we denote the

                        areas of the triangles ABM,\;KLM by \textbf{S}_1,\; \textbf{S}_2 and the areas of the

                        quadrilaterals ADLM,\;BCKM by \textbf{S}_3,\;\textbf{S}_4. The following                                              relationship holds:

\textbf{S}_3+\textbf{S}_4=\textbf{S}_1-\textbf{S}_2+2 \cdot \sqrt{\textbf{S}_1 \cdot \textbf{S}_2} \tag{1}


          Solution CiP

               I added additional lines and notations to the figure, compared to those mentioned in the statement: EF \parallel AB,DC,\;EF \ni M,\;\;PQ\perp AB,DC,\;PQ \ni M.

          It is known that the ratio of the areas of two similar triangles

\frac{\textbf{S}_2}{\textbf{S}_1}=\left ( \frac{MQ}{MP} \right )^2\;\;\Rightarrow\;\frac{MQ}{MP}=\sqrt{\frac{\textbf{S}_2}{\textbf{S}_1}} \tag{2}

We also have \frac{\textbf{S}_{CEFD}}{\textbf{S}_{ABEF}}=\frac{EF \cdot MQ}{EF \cdot MP}=\frac{MQ}{MP}\underset{(2)}{=}\sqrt{\frac{\textbf{S}_2}{\textbf{S}_1}}\;\;\;\Rightarrow \;\textbf{S}_{CEFD}=\textbf{S}_{ABEF} \cdot \sqrt{\frac{\textbf{S}_2}{\textbf{S}_1}} \tag{3}

     On the other hand \textbf{S}_{ABEF}=AB \cdot MP=2\cdot \textbf{S}_{ABM}=2\cdot\textbf{S}_1\;\;\overset{(3)}{\Rightarrow}\;\textbf{S}_{CEFD}=2\cdot \sqrt{\textbf{S}_1\cdot \textbf{S}_2}

and      \textbf{S}_{ABCD}=\textbf{S}_{ABEF}+\textbf{S}_{CEFD}=2\cdot \textbf{S}_1+2\cdot \sqrt{\textbf{S}_1 \cdot \textbf{S}_2}\;\;\;\Leftrightarrow

\Leftrightarrow \textbf{S}_1+\textbf{S}_2+\textbf{S}_3+\textbf{S}_4=2\cdot \textbf{S}_1+2\cdot \sqrt{\textbf{S}_1 \cdot \textbf{S}_2}\;\;\;\Rightarrow \textbf{S}_3+\textbf{S}_4=\textbf{S}_1-\textbf{S}_2+2\cdot \sqrt{\textbf{S}_1 \cdot \textbf{S}_2}

QED \blacksquare

joi, 20 februarie 2025

Tiger oder fatiguer Geometry ???

        Find the area of ​​the parallelogram ABCD

ANSWER CiP            \textbf{S}_{ABCD}=96

    

          The problem is from Igor's Twitter post. He also gave a solution. In a later comment he said that the original Square could only be a Rectangle, refraining from the same answer. The author of Peter Gallin gave a much appreciated computational solution, which probably remains valid for rectangles as well. I analyzed Igor's solution, which is not explained in detail enough. He writes some equations that lead to the result. Even for this he deserves our thanks.    

   

                                           Solution CiP

              I appreciate that Igor's solution is based on the geometric results which also appear in my Post A LEMMA and a COROLLARY ... It will be seen that in this way the Problem can be formulated even in a Parallelogram. The calculations made by Peter Gallin helped me draw a corresponding figure to scale. We thank him too.

               We introduce additional notations in the figure:
points G,\;H,\;K and segments [BG],\;[DG]. We also call the areas \textbf{S}_{AFG}=U,\;\textbf{S}_{CEK}=W.

          Applying the Lemma from the previously mentioned post to the quadrilaterals ADGF,\;BCEG we have that the following areas have the values 

\textbf{S}_{DGH}=\frac{180}{U},\quad \quad \textbf{S}_{BGK}=\frac{9}{W} \;.\tag{1}

          It remains to express the areas marked with ?,\;?? in the figure. For this we will use another result, valid in parallelograms, namely that, in the adjacent figure

 we have \textbf{S}_{ABG}=\textbf{S}_{ADC} (and of course \textbf{S}_{BCG}=\textbf{S}_{CDG}). Apologies for overlapping some notations !! Indeed, for BH,\;DJ \perp AC we have, from congruent triangles \Delta ADJ \equiv \Delta CBH that BH=DJ and sos

2 \cdot \textbf{S}_{ABG}=AG \cdot BH=AG \cdot DJ=2 \cdot \textbf{S}_{ADG}

 

          Returning to the figure from the problem, we will apply this situation exactly to point G, and so we can write 

\textbf{S}_{ABG}=\textbf{S}_{ADG}\quad \quad \textbf{S}_{CDG}=\textbf{S}_{BCG}\;\;\; \Leftrightarrow

\Leftrightarrow \;\;\; U+10+?=18+\frac{180}{U} \quad \quad W+1+??=9+\frac{9}{W}\;\;\; \Leftrightarrow

\Leftrightarrow \;\;\;\;?=\frac{180}{U}-U+8 \quad \quad ??=\frac{9}{W}-W+8 \tag{2}

Thus, I found all the information presented in the figure from Igor's solution. (I changed the letters A and B to W and U). All that remains is to write the equations that solve the problem.


          We will apply the Corollary we mentioned at the beginning for trapezoids ABCE and ADCF (Note that we don't even have to draw them in full because we would unnecessarily clutter up the figure!) Namely

 \textbf{S}_{BCK}^2=\textbf{S}_{CEK} \cdot \textbf{S}_{ABK}\quad \quad \textbf{S}_{ADH}^2=\textbf{S}_{AFH} \cdot \textbf{S}_{DCH} \tag{3}

But from the figure with the areas marked on it we also find

\textbf{S}_{ABK}=U+10+?+\frac{9}{W}\overset{(2)}{=}U+10+\frac{180}{U}-U+8+\frac{9}{W}=\frac{9}{W}+\frac{180}{U}+18

\textbf{S}_{CDH}=W+1+??+\frac{180}{U}\underset{(2)}{=}W+1+\frac{9}{W}-W+8+\frac{180}{U}=\frac{9}{W}+\frac{180}{U}+9

and then the relations (3) are written

9^2=W \cdot \left ( \frac{9}{W}+\frac{180}{U}+18 \right )\quad \quad 18^2=U \cdot \left ( \frac{9}{W}+\frac{180}{U}+9\right ) \tag{4}

From here we will find U and W. Let us also note that the area of ​​the entire parallelogram is

2\cdot \textbf{S}_{ABC}=U+10+?+\frac{9}{W}+9=\underset{(2)}{=}U+10+\frac{180}{U}-U+8+\frac{9}{W}+9 so
\textbf{S}_{ABCD}=2 \cdot \left (\frac{9}{W}+\frac{180}{U}+27 \right ) \tag{5}


          We will leave the geometry aside and move on to solving the system of equations (4). After performing the calculations and simplifications, it is written

\begin{cases}10 \frac{W}{U}+W=4\\\frac{U}{W}+U=16\end{cases}

Eliminating the denominators will result

\begin{cases}UW=4U-10W\\UW=16W-U \end{cases}

From here 4U-10W=16W-U\;\Leftrightarrow\;5U=26W and substituting \frac{U}{W}=\frac{26}{5} into one of the equations we have \frac{26}{5}+U=16\;\;\Rightarrow U=\frac{54}{5}. Then W=\frac{5}{26}\cdot U= =\frac{5}{26}\cdot \frac{54}{5}=\frac{27}{13}.

          Oh, finally, from (5) we calculate the area of ​​the parallelogram
\textbf{S}_{ABCD}=2 \cdot \left (\frac{9}{\frac{27}{13}}+\frac{180}{\frac{54}{5}}+27  \right )=96

\blacksquare

ЛЕМА и ЗАКЛУЧОК кои не се премногу НЕКОРИСНИ // A LEMMA and a COROLLARY that are not too USELESS

          We denote in these lines with \textbf{S}_{ABC} the area of ​​triangle ABC.


          LEMMA  Let ABCD be a convex quadrilateral and O be the point of

                           intersection of the diagonals AC,\;BD. Then

\textbf{S}_{AOB} \cdot \textbf{S}_{COD}= \textbf{S}_{AOD} \cdot \textbf{S}_{BOC} \tag{1}

                          holds.

         Proof of Lemma {it would work immediately by applying the formula for the area of ​​a triangle \textbf{S}_{AOB}=OA \cdot OB \cdot \sin \widehat{AOB}/2 etc. and the equality of the sines of the supplementary angles. I prefer a demonstration that would make even a parrot envious.}

          Let {\color{Brown} {AE}},\;{\color{Brown}{CF}} \perp BD

We have the formulas
2\textbf{S}_{AOB}={\color{Yellow}{OB}} \cdot {\color{Brown}{AE}},\;\;\;\;2\textbf{S}_{BOC}={\color{Blue}{OB}} \cdot {\color{Brown}{CF}} \tag{2}
2\textbf{S}_{COD}={\color{Green}{OD}} \cdot {\color{Brown}{CF}},\;\;\;\;2\textbf{S}_{AOD}={\color{Red}{OD}} \cdot {\color{Brown}{AE}} \tag{3}
Then
4\textbf{S}_{AOB}\cdot \textbf{S}_{COD}={\color{Yellow}{OB}} \cdot {\color{Brown}{AE}} \cdot {\color{Green}{OD}} \cdot {\color{Brown}{CF}}={\color{Blue}{OB}} \cdot {\color{Brown}{CF}} \cdot {\color{Red}{OD}} \cdot {\color{Brown}{AE}}=4\textbf{S}_{BOC} \cdot \textbf{S}_{AOD}.

The Lemma is proven.

\square(QED Lemma)


          COROLLARY  In the trapezoid ABCD,\;\; AB \parallel CD we have

\textbf{S}_{AOD}^2=\textbf{S}_{BOC}^2=\textbf{S}_{AOB} \cdot \textbf{S}_{COD} \tag{4}

          Indeed, let AE,\;BF \perp CD. We have AE=BF, so

2\textbf{S}_{ACD}=AE \cdot CD=BF \cdot CD=2 \textbf{S}_{BCD}\;\;\Rightarrow\;\textbf{S}_{ACD}-\textbf{S}_{COD}=\textbf{S}_{BCD}-\textbf{S}_{COD}\Rightarrow

\Rightarrow\;\;\textbf{S}_{AOD}=\textbf{S}_{BOC}

and (4) results from (1).

\blacksquare

luni, 17 februarie 2025

An Equation That Saved the World // Një ekuacion që shpëtoi botën

                Well, not exactly the World, but at least the Problem from yesterday's Post. I promised an analytical solution there, which here it is.

          We choose a Cartesian Frame with the origin at point O, the x-axis along the side OA and the y-axis along the side OB. The coordinates are marked on the figure.

          We will calculate the slope of line AF, showing that it is -1 so \phi=135^{\circ}.

          The equation of the line OE, which passes through points O(0,0) and E(a-c,b), is

y=\frac{b}{a-c} \cdot x.\tag{OE}

The equation of the line CD, which passes through points C(0,c) and D(a,b) is

y-c=\frac{b-c}{a-0} \cdot (x-0). \tag{CD}

Point F - the intersection of lines OE and CD - has the coordinates obtained from solving the two equations (OE),\;(CD):

\frac{b}{a-c} \cdot x-c=\frac{b-c}{a} \cdot x\;\;\Rightarrow\;x=x_F=\frac{a(a-c)}{a+b-c};\tag{$x_F$}

and y_F=y\underset{(OE)}{=}\frac{b}{a-c} \cdot x_F=\frac{b}{a-c}\cdot \frac{a(a-c)}{a+b-c}=\frac{ab}{a+b-c}. \tag{$y_F$}

      The slope of line AF is

m=\tan \phi =\frac{y_F-y_A}{x_F-x_A} \overset{(x_F)\;(y_F)}{===} \frac{\frac{ab}{a+b-c}-0}{\frac{a(a-c)}{a+b-c}-a}=\frac{\frac{ab}{a+b-c}}{\frac{a^2-ac-a^2-ab+ac}{a+b-c}}=\frac{ab}{-ab}=-1.

Q.E.D.

sâmbătă, 15 februarie 2025

Walking on the edges of a rectangle

      From X-post.

       

          We will post a solution with Analytical Geometry later.


ANSWER CiP

\alpha=45^{\circ}

                    

                           Solution CiP

          Let's make some notations on the figure: OA=a,\;OB=b,\;OC=DE=c.

The extension of the segment OE beyond point E intersects the line AD at point G.

          From the similar triangles \Delta OBE \sim \Delta GDE (because GD \parallel BO)

 we have \frac{OB}{GD}=\frac{EB}{ED}\;\Leftrightarrow \frac{b}{GD}=\frac{a-c}{c}, hence

GD=\frac{b\cdot c}{a-c} \tag{1}

For the same reason, we have the similar triangles \Delta CFO \sim \Delta DFG, so

\frac{FO}{FG}=\frac{CO}{GD}\underset{(1)}{=}\frac{c}{\frac{bc}{a-c}}=\frac{a-c}{b}. \tag{2}

          On the other hand \frac{AO}{AG}\overset{(1)}{=}\frac{a}{b+\frac{bc}{a-c}}=\frac{a}{\frac{ab}{a-c}}=\frac{a-c}{b}. Comparing with (2) it is seen that

\frac{FO}{FG}=\frac{OA}{AG}

so by the conversely of the Angle Bisector Theorem it follows that AF is the angle bisector of angle \measuredangle OAG=90^{\circ}.

\blacksquare

sâmbătă, 8 februarie 2025

Circle Inscribed in a Half of a SQUARE

 From a Linkedin Post


ANSWER CiP

\frac{a}{b}=1+\sqrt{2}


                    Solution CiP

          Notations

We have the equality of triangles (ASA)
\Delta BEO \equiv \Delta DFO
because OB \equiv OD:=a, \measuredangle {OBE}=\measuredangle{ODF}=45^{\circ}, \; \measuredangle {BOE} \equiv \measuredangle{DOF} as vertical angles.

From here DF=b, so CF=a. But CF \equiv CO as tangents from point C to the circle. Then, from the right and isosceles triangle BOC we find BC=a\cdot \sqrt{2}.
          We have the equations a+b=AB=BC=a\cdot \sqrt{2}, hence
 a(\sqrt{2}-1)=b\;\Rightarrow a(\sqrt{2}-1)(\sqrt{2}+1)=b(\sqrt{2}+1) \Leftrightarrow a(2-1)=b(\sqrt{2}+1), so \frac{a}{b}=\sqrt{2}+1. We got the answer.
\blacksquare

marți, 4 februarie 2025

Примена једначине 3-степена у геометрији // Applying a 3rd degree Equation in Geometry

           From a LinkedIn post of Reygan Diionisio , see here. You can also watch it on YouTube.


ANSWER CiP

x=3


                    Solution CiP

          With the notations in the figure below

     We will apply the Law of cosine to triangles. More precisely, a consequence of it.

\cos \measuredangle ACB=\frac{a^2+b^2-c^2}{2ab} \tag{1}

where, for triangle ABC we note a=BC,\;b=AC,\;c=AB.

Applying (1) to triangle ABE we have

\cos \measuredangle{1}=\cos \widehat{AEB}=\frac{AE^2+BE^2-AB^2}{2\cdot AE \cdot BE}=

=\frac{(x+5)^2+x^2-49}{2x(x+5)}=\frac{2x^2+10x-24}{2x(x+5)}=\frac{x^2+5x-12}{x(x+5)}. \tag{2}

Applying (1) to triangle CDE we have

\cos \measuredangle{2}=\cos \widehat{CED}=\frac{CE^2+ED^2-CD^2}{2\cdot CE \cdot ED}=

=\frac{25+x^2-49}{2\cdot 5 \cdot x}=\frac{x^2-24}{10x}. \tag{3}

Given that angles \measuredangle{1} and \measuredangle{2} are supplementary, we have
\cos \measuredangle{1}=-\cos \measuredangle{2}

so, from (2) and (3), we have the equation

\frac{x^2+5x-12}{x(x+5)}=-\frac{x^2-24}{10x}

\Leftrightarrow\;10\cdot(x^2+5x-12)=-(x+5)(x^2-24)\Leftrightarrow x^3+15x^2+26x-240=0 \tag{4}

We easily find that the equation (4) has the rational root x_1=3 through the Horner's Method:

\begin{array}{c|c} \;&1&15&26&-240\\ \hline 3&1&18&80&0 \end{array}

Also from the table, second line, we see that the other two roots are given by the equation

x^2+18x+80=0, but they are x_2=-10,\;x_3=-8 but they have no geometric significance, being negative.

\blacksquare


          Remark CiP  For x=3, from the relation (2) we obtain \cos \measuredangle{1}=\frac{1}{2} so \measuredangle{1}=60^{\circ}