From X-post.
We will post a solution with Analytical Geometry later.
ANSWER CiP
\alpha=45^{\circ}
Solution CiP
Let's make some notations on the figure: OA=a,\;OB=b,\;OC=DE=c.
The extension of the segment OE beyond point E intersects the line AD at point G.From the similar triangles \Delta OBE \sim \Delta GDE (because GD \parallel BO)
we have \frac{OB}{GD}=\frac{EB}{ED}\;\Leftrightarrow \frac{b}{GD}=\frac{a-c}{c}, hence
GD=\frac{b\cdot c}{a-c} \tag{1}
For the same reason, we have the similar triangles \Delta CFO \sim \Delta DFG, so
\frac{FO}{FG}=\frac{CO}{GD}\underset{(1)}{=}\frac{c}{\frac{bc}{a-c}}=\frac{a-c}{b}. \tag{2}
On the other hand \frac{AO}{AG}\overset{(1)}{=}\frac{a}{b+\frac{bc}{a-c}}=\frac{a}{\frac{ab}{a-c}}=\frac{a-c}{b}. Comparing with (2) it is seen that
\frac{FO}{FG}=\frac{OA}{AG}
so by the conversely of the Angle Bisector Theorem it follows that AF is the angle bisector of angle \measuredangle OAG=90^{\circ}.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu