Processing math: 100%

sâmbătă, 15 februarie 2025

Walking on the edges of a rectangle

      From X-post.

       

          We will post a solution with Analytical Geometry later.


ANSWER CiP

\alpha=45^{\circ}

                    

                           Solution CiP

          Let's make some notations on the figure: OA=a,\;OB=b,\;OC=DE=c.

The extension of the segment OE beyond point E intersects the line AD at point G.

          From the similar triangles \Delta OBE \sim \Delta GDE (because GD \parallel BO)

 we have \frac{OB}{GD}=\frac{EB}{ED}\;\Leftrightarrow \frac{b}{GD}=\frac{a-c}{c}, hence

GD=\frac{b\cdot c}{a-c} \tag{1}

For the same reason, we have the similar triangles \Delta CFO \sim \Delta DFG, so

\frac{FO}{FG}=\frac{CO}{GD}\underset{(1)}{=}\frac{c}{\frac{bc}{a-c}}=\frac{a-c}{b}. \tag{2}

          On the other hand \frac{AO}{AG}\overset{(1)}{=}\frac{a}{b+\frac{bc}{a-c}}=\frac{a}{\frac{ab}{a-c}}=\frac{a-c}{b}. Comparing with (2) it is seen that

\frac{FO}{FG}=\frac{OA}{AG}

so by the conversely of the Angle Bisector Theorem it follows that AF is the angle bisector of angle \measuredangle OAG=90^{\circ}.

\blacksquare

Niciun comentariu:

Trimiteți un comentariu