From X-post.
We will post a solution with Analytical Geometry later.
ANSWER CiP
$$\alpha=45^{\circ}$$
Solution CiP
Let's make some notations on the figure: $OA=a,\;OB=b,\;OC=DE=c.$
The extension of the segment $OE$ beyond point $E$ intersects the line $AD$ at point $G$.From the similar triangles $\Delta OBE \sim \Delta GDE$ (because $GD \parallel BO$)
we have $\frac{OB}{GD}=\frac{EB}{ED}\;\Leftrightarrow \frac{b}{GD}=\frac{a-c}{c}$, hence
$$GD=\frac{b\cdot c}{a-c} \tag{1}$$
For the same reason, we have the similar triangles $\Delta CFO \sim \Delta DFG$, so
$$\frac{FO}{FG}=\frac{CO}{GD}\underset{(1)}{=}\frac{c}{\frac{bc}{a-c}}=\frac{a-c}{b}. \tag{2}$$
On the other hand $\frac{AO}{AG}\overset{(1)}{=}\frac{a}{b+\frac{bc}{a-c}}=\frac{a}{\frac{ab}{a-c}}=\frac{a-c}{b}.$ Comparing with (2) it is seen that
$$\frac{FO}{FG}=\frac{OA}{AG}$$
so by the conversely of the Angle Bisector Theorem it follows that $AF$ is the angle bisector of angle $\measuredangle OAG=90^{\circ}$.
$\blacksquare$
Niciun comentariu:
Trimiteți un comentariu