We denote in these lines with \textbf{S}_{ABC} the area of triangle ABC.
LEMMA Let ABCD be a convex quadrilateral and O be the point of
intersection of the diagonals AC,\;BD. Then
\textbf{S}_{AOB} \cdot \textbf{S}_{COD}= \textbf{S}_{AOD} \cdot \textbf{S}_{BOC} \tag{1}
holds.
Proof of Lemma {it would work immediately by applying the formula for the area of a triangle \textbf{S}_{AOB}=OA \cdot OB \cdot \sin \widehat{AOB}/2 etc. and the equality of the sines of the supplementary angles. I prefer a demonstration that would make even a parrot envious.}
Let {\color{Brown} {AE}},\;{\color{Brown}{CF}} \perp BD.
The Lemma is proven.
\square(QED Lemma)
COROLLARY In the trapezoid ABCD,\;\; AB \parallel CD we have
\textbf{S}_{AOD}^2=\textbf{S}_{BOC}^2=\textbf{S}_{AOB} \cdot \textbf{S}_{COD} \tag{4}
Indeed, let AE,\;BF \perp CD. We have AE=BF, so
2\textbf{S}_{ACD}=AE \cdot CD=BF \cdot CD=2 \textbf{S}_{BCD}\;\;\Rightarrow\;\textbf{S}_{ACD}-\textbf{S}_{COD}=\textbf{S}_{BCD}-\textbf{S}_{COD}\Rightarrow
\Rightarrow\;\;\textbf{S}_{AOD}=\textbf{S}_{BOC}
and (4) results from (1).
\blacksquare
I have already exposed this at
RăspundețiȘtergerehttps://artofproblemsolving.com/community/c573365h1597699_a_problem_concerning_areas