We denote in these lines with $\textbf{S}_{ABC}$ the area of triangle $ABC$.
LEMMA Let $ABCD$ be a convex quadrilateral and $O$ be the point of
intersection of the diagonals $AC,\;BD.$ Then
$$\textbf{S}_{AOB} \cdot \textbf{S}_{COD}= \textbf{S}_{AOD} \cdot \textbf{S}_{BOC} \tag{1}$$
holds.
Proof of Lemma {it would work immediately by applying the formula for the area of a triangle $\textbf{S}_{AOB}=OA \cdot OB \cdot \sin \widehat{AOB}/2$ etc. and the equality of the sines of the supplementary angles. I prefer a demonstration that would make even a parrot envious.}
Let ${\color{Brown} {AE}},\;{\color{Brown}{CF}} \perp BD$.
The Lemma is proven.
$\square$(QED Lemma)
COROLLARY In the trapezoid $ABCD,\;\; AB \parallel CD$ we have
$$\textbf{S}_{AOD}^2=\textbf{S}_{BOC}^2=\textbf{S}_{AOB} \cdot \textbf{S}_{COD} \tag{4}$$
Indeed, let $AE,\;BF \perp CD$. We have $AE=BF$, so
$2\textbf{S}_{ACD}=AE \cdot CD=BF \cdot CD=2 \textbf{S}_{BCD}\;\;\Rightarrow\;\textbf{S}_{ACD}-\textbf{S}_{COD}=\textbf{S}_{BCD}-\textbf{S}_{COD}\Rightarrow$
$$\Rightarrow\;\;\textbf{S}_{AOD}=\textbf{S}_{BOC}$$
and (4) results from (1).
$\blacksquare$
I have already exposed this at
RăspundețiȘtergerehttps://artofproblemsolving.com/community/c573365h1597699_a_problem_concerning_areas