Processing math: 100%

marți, 4 februarie 2025

Примена једначине 3-степена у геометрији // Applying a 3rd degree Equation in Geometry

           From a LinkedIn post of Reygan Diionisio , see here. You can also watch it on YouTube.


ANSWER CiP

x=3


                    Solution CiP

          With the notations in the figure below

     We will apply the Law of cosine to triangles. More precisely, a consequence of it.

\cos \measuredangle ACB=\frac{a^2+b^2-c^2}{2ab} \tag{1}

where, for triangle ABC we note a=BC,\;b=AC,\;c=AB.

Applying (1) to triangle ABE we have

\cos \measuredangle{1}=\cos \widehat{AEB}=\frac{AE^2+BE^2-AB^2}{2\cdot AE \cdot BE}=

=\frac{(x+5)^2+x^2-49}{2x(x+5)}=\frac{2x^2+10x-24}{2x(x+5)}=\frac{x^2+5x-12}{x(x+5)}. \tag{2}

Applying (1) to triangle CDE we have

\cos \measuredangle{2}=\cos \widehat{CED}=\frac{CE^2+ED^2-CD^2}{2\cdot CE \cdot ED}=

=\frac{25+x^2-49}{2\cdot 5 \cdot x}=\frac{x^2-24}{10x}. \tag{3}

Given that angles \measuredangle{1} and \measuredangle{2} are supplementary, we have
\cos \measuredangle{1}=-\cos \measuredangle{2}

so, from (2) and (3), we have the equation

\frac{x^2+5x-12}{x(x+5)}=-\frac{x^2-24}{10x}

\Leftrightarrow\;10\cdot(x^2+5x-12)=-(x+5)(x^2-24)\Leftrightarrow x^3+15x^2+26x-240=0 \tag{4}

We easily find that the equation (4) has the rational root x_1=3 through the Horner's Method:

\begin{array}{c|c} \;&1&15&26&-240\\ \hline 3&1&18&80&0 \end{array}

Also from the table, second line, we see that the other two roots are given by the equation

x^2+18x+80=0, but they are x_2=-10,\;x_3=-8 but they have no geometric significance, being negative.

\blacksquare


          Remark CiP  For x=3, from the relation (2) we obtain \cos \measuredangle{1}=\frac{1}{2} so \measuredangle{1}=60^{\circ}

2 comentarii:

  1. We can also notice in the figure from the solution, besides the angle \measuredangle{1} of 60^{\circ}, the equality of angles \measuredangle{BAE}, \measuredangle{DCE}, both having the cosine equal to \frac{13}{14}.

    RăspundețiȘtergere
    Răspunsuri
    1. Could_? there be a more "geometric" solution to this problem??

      Ștergere