Processing math: 0%

vineri, 31 ianuarie 2025

A Divisibility Problem That Catches Us in the Morning

                It is Problem S:E24.359 from SGMB magazine (12/2024 at page 8), proposed for 8th grade, by a well-known author.

In translation:

              "Let x and y be nonzero natural numbers for which 13\mid (3x-2y). Show 

                 that the fraction

\frac{31^{8(x+y)+1}}{x^2+y^2} is reducible."

This problem led me to make the Post here


ANSWER CiP

The given fraction can always be simplified by 13 


               Solution CiP

               Lemma 1  13\mid (3x-2y) \Rightarrow 13\mid (5x+y) and 13\mid (x-5y).

          Proof of  L1  We observe relationships:

2\cdot (5x+y)=13\cdot x-(3x-2y)\;\;;\;\;3\cdot (x-5y)=(3x-2y)-13 \cdot y.

From the hypothesis 13\mid (3x-2y) it then follows that

13 \mid 2\cdot (5x+y)\; and\; 13\mid 3\cdot (x-5y)

and, because (13\;,2)=1=(13\;,3), it must 13\mid (5x+y) \;and\; 13 \mid (x-5y).

qed_L1 \square

          Remark CiP I found the property in the mentioned post. <end Rem>


               Lemma  13\mid (3x-2y) \Rightarrow 13\mid (x^2+y^2).

          Proof of L2  We have the equation, easy to verify by calculations

(5x+y)^2+(x-5y)^2=26 \cdot (x^2+y^2).\tag{1}

From the hypothesis 13\mid (3x-2y) we have, applying Lemma 1 :

 13^2 \mid (5x+y)^2\;and\;13^2 \mid (x-5y)^2\;\;\overset{(1)}{\Rightarrow} 13^2\mid 26\cdot (x^2+y^2)\Rightarrow 13\mid 2\cdot(x^2+y^2)

and, because (13\;,2)=1 it must
13\mid (x^2+y^2). \tag{2}

qed_L2 \square


          In the following equations the number k has different values, which we are not interested in:

31=13\cdot k+5\Rightarrow 31^2=31\cdot(13k+5)=13k+155=13k+12\cdot 13-1=13k-1\Rightarrow

\Rightarrow 31^3=31\cdot (13k-1)=13k-26-5=13k-5\Rightarrow 31^4=31\cdot(3k-5)=13k-12\cdot 13+1=13k+1.

For m=2(x+y) we obtain 

31^{8(x+y)+1}-18=31^{4\cdot m+1}-18=31^{4\cdot m}\cdot 31-18=(31^4)^m\cdot 31-18=

=(13k+1)^m\cdot 31-18=(13k+1) \cdot 31-18=13k+31-18=13k+13=13\cdot k.

So the numerator of the fraction in the statement is divisible by 13. This together with (2) proves the answer.

\blacksquare

2 comentarii:

  1. I also posted the problem on AOPS and received a very cool solution from https://artofproblemsolving.com/community/user/718378#:~:text=User%20Profile-,mathlearner2357

    https://artofproblemsolving.com/community/c4h3494743

    RăspundețiȘtergere