Proposed for 8th grade by the same author; in SGMB 11/2024.
In translation:
"If x and y are nonzero integers such that 13(x^2+y^2)=(2x+3y)^2, show
that the fraction \frac{3x+11y}{x^4+y^4+15x^2y^2} is reducible."
ANSWER CiP
x=2 \cdot k,\;y=3 \cdot k,\;\;k \in \mathbb{Z}^* and
the fraction always simplifies (at least) to 13
Solution CiP
The given condition about the numbers x and y is successively equivalent to
13 \cdot x^2+13 \cdot y^2=4 \cdot x^2+12 \cdot xy+9 \cdot y^2\;\;\Leftrightarrow\;\;9x^2-12xy+4y^2=0\;\;\Leftrightarrow
\Leftrightarrow\;\;(3x-2y)^2=0\;\;\Leftrightarrow\;\;3 \cdot x=2 \cdot y\;.
We see from the last equation that 2 \mid 3\cdot x, but(EUCLD's Lemma) 2 and 3 being relatively prime, the result is that 2 \mid x, so x=2\cdot k fore some 0 \neq k\in \mathbb{Z} and then
3\cdot x=2\cdot y \;\Rightarrow\;\;3 \cdot 2k=2 \cdot y\;\;\Rightarrow y=3k\;.
In this case the given fraction is
\frac{3\cdot 2k+11 \cdot 3k}{16k^4+81k^4+15 \cdot 4k^2\cdot 9k^2}=\frac{39 \cdot k}{637 \cdot k^4}=\frac{13\cdot 3k}{13 \cdot 49k^4}
and we get the answer.
\blacksquare
Niciun comentariu:
Trimiteți un comentariu