In GMB 11/2024 page 650, author Mihaela BERINDEANU, Bucharest, proposed for 8th grade.
In translation:
"Solve in $\mathbb{Z}$ the equation $x^2+2y^2-4=2xy-2|x-y|.$"
ANSWER CiP
$$(x,y) \in \{(-2,-2),\;(-2,-1),\;(0,\pm 1),\;(2,1),\;(2,2)\}$$
Solution CiP
Let us denote $z=x-y$. We have
$$x=y+z \tag{1}$$
and the equation is written equivalently
$$(y+z)^2+2y^2-4=2(y+z)y-2|z|\;\Leftrightarrow$$
$$\Leftrightarrow\;\;y^2+2yz+z^2+2y^2-4=2y^2+2yz-2|z|\;\Leftrightarrow\;y^2+z^2+2|z|-4=0\;\Leftrightarrow$$
$$\Leftrightarrow\;\;y^2+(|z|+1)^2=5. \tag{2}$$
In $\mathbb{Z}$ equation (2) is satisfied in the cases
$\begin{cases}y^2=1\\|z|+1=2; \end{cases} \tag{3}$
$\begin{cases}y^2=4\\|z|+1=1. \end{cases} \tag{4}$
Case (3) gives us \begin{cases}y=\pm1\\x-y=\pm1 \end{cases}
and we find the solutions $(2,1),\;(0,1),\;(0,-1),\;(-2,-1)$.
Case (4) give us \begin{cases}y=\pm 2\\x-y=0 \end{cases}
and we find the solutions $(2,2),\;(-2,-2)$. We got the answer.
$\blacksquare$
Niciun comentariu:
Trimiteți un comentariu