Processing math: 100%

sâmbătă, 18 ianuarie 2025

Problem E : 17 052

             In GMB 11/2024 page 650,  author Mihaela BERINDEANU, Bucharest, proposed for 8th grade.

In translation:

"Solve in \mathbb{Z} the equation x^2+2y^2-4=2xy-2|x-y|."


ANSWER CiP

(x,y) \in \{(-2,-2),\;(-2,-1),\;(0,\pm 1),\;(2,1),\;(2,2)\}


                    Solution CiP

               Let us denote z=x-y. We have 

x=y+z \tag{1}

and the equation is written equivalently

 (y+z)^2+2y^2-4=2(y+z)y-2|z|\;\Leftrightarrow

\Leftrightarrow\;\;y^2+2yz+z^2+2y^2-4=2y^2+2yz-2|z|\;\Leftrightarrow\;y^2+z^2+2|z|-4=0\;\Leftrightarrow

\Leftrightarrow\;\;y^2+(|z|+1)^2=5. \tag{2}

In \mathbb{Z} equation (2) is satisfied in the cases

\begin{cases}y^2=1\\|z|+1=2; \end{cases} \tag{3}

\begin{cases}y^2=4\\|z|+1=1. \end{cases} \tag{4}

Case (3) gives us \begin{cases}y=\pm1\\x-y=\pm1 \end{cases}

and we find the solutions (2,1),\;(0,1),\;(0,-1),\;(-2,-1).

Case (4) give us \begin{cases}y=\pm 2\\x-y=0 \end{cases}

and we find the solutions (2,2),\;(-2,-2). We got the answer.

\blacksquare

Niciun comentariu:

Trimiteți un comentariu