It is Problem E:17056 of GMB 11/2024, page 651, authors Dragoș PETRICĂ and Cosmin MANEA from Pitești. In translation:
"Determine the natural numbers $x,\;y,\;z,\;t\;$ and $u\;$ that simultaneously
verify the relations $x^2+y^2+z^2+t^2=7\cdot u^2$ and $x\cdot t=y\cdot z$"
ANSWER CiP
$$x=y=z=t=u=0$$
Solution CiP
Taking into account the relationship
$$x\cdot t=y\cdot z \tag{1}$$
the given equation is written successively equivalent to
$(x^2\pm 2 \cdot xt+t^2)+(y^2\mp 2 \cdot yz+z^2)=7\cdot u^2\;\;\Leftrightarrow$
$$\Leftrightarrow\;\;(x\pm t)^2+(y\mp z)^2=7\cdot u^2. \tag{2}$$
From (2) it is seen that the prime number $7$ divides a sum of two squares of integers. We will first prove the following
Lemma For $A,\;B \in \mathbb{Z}$ we have $7\;\mid\;A^2+B^2\;\;\Rightarrow\;\;7\mid A\;\;and\;\;7\mid B.$
Proof of the Lemma
We have, after the remainders of dividing $A$ by $7$, one of the possibilities
$$(i)\;A=7 \cdot k,\;\;(ii)\;A=7\cdot k\pm 1,\;\;(iii)\;A=7 \cdot k \pm 2,\;\;(iv)\;A=7\cdot k \pm3,\;\;\; k\in \mathbb{Z}$$
Then, we have respectively $(i)\;A^2=(7k)^2=7\cdot(7k^2)=7\cdot K$
$(ii)\;A^2=(7k\pm 1)^2=49k^2\pm 14k+1=7\cdot K+1$
$(iii)\;A^2=(7k\pm 2)^2=49k^2\pm 28k+4=7\cdot K+4=7\cdot(K+1)-3$
$(iv)\;A^2=(7k\pm 3)^2=49k^2 \pm 42k+9=7\cdot (7k^2\pm 6k+1)+2$
where, in different cases, the number $K$ has different values. In other words, the natural remainders of dividing $A^2$ by $7$ can only be $0,\;1,\;2\; or\; 4.$ Considering instead of the remainder $4$ the equivalent value $-3$, $(mod\; 7)$, we have one of the possibilities
$$A^2=7\cdot K,\;\;A^2=7 \cdot K+1,\;\;A^2=7\cdot K+2,\;\;A^2=7\cdot K-3,\;\;\;K\in\mathbb{N}.$$
Obviously we have the same cases for $B^2$, and then, for $A^2+B^2$ we have the possibilities in the Table below, also calculated mod_7:
\begin{array}{|c|c|c|c|c|}\hline B^2/A^2&0&1&2&-3\\ \hline 0&0&1&2&-3\\ \hline 1&1&2&3&-2\\ \hline 2&2&3&-3&-1\\ \hline -3&-3&-2&-1&2\\ \hline\end{array}
It can be seen from the Table above that $7\mid A^2+B^2$, that is $A^2+B^2=0\;mod\;7$ if and only if $A^2=0\;mod\;7\;and\;\;B^2=0\;mod\;7$, or $7\mid A^2\;\;and\;\;7\mid B^2$, and hence $7\mid A\;\;and\;\;7\mid B.$
$\square\;Lemma$
Returning to (2), we have, according to Lemma
$$|x\pm t|=7\cdot v,\;\;|y\mp z|=7\cdot w,\;\;\;v,\;w \in \mathbb{N}\;;\;\Rightarrow$$
$\Rightarrow\;49(v^2+w^2)=7u^2\;\;\Leftrightarrow\;\;7(v^2+w^2)=u^2$, and hence $7\mid u$, so $u=7\dot u_1$ and
$$v^2+w^2=7\cdot u_1^2,\;\;\;u_1<u,\;\;u_1\in\mathbb{N}.\tag{3}$$
But in equation (3) we see that $7\mid (v^2+w^2)$ so, according Lemma again, $7\mid v$ and $7\mid w$. Then $v=7\cdot v_1,\;w=7\cdot w_1$ and $$49 \cdot v_1^2+49 \cdot w_1^2=7\cdot u_1^2\;\;\Leftrightarrow\;\;7(v_1^2+w_1^2)=u_1^2.$$
From here it follows $7\mid u_1$ so $u_1=7\cdot u_2$, and
$$v_1^2+w_1^2=7 \cdot u_2^2,\;\;\;u_2<u_1,\;\;u_2\in\mathbb{N}. \tag{4}$$
Comparing (3) and (4) we see that, continuing the process, we would obtain an infinitely decreasing sequence of natural numbers $u>u_1>u_2>\dots$, which is not possible. So $u=0.$
But then $x^2+y^2+z^2+t^2=0$ and hence $x=y=z=t=0$. We got the answer.
$\blacksquare$
Remark CiP Although $7$ is a sum of four squares $7=2^2+1^1+1^2+1^2$ the condition (1) is not met.
<end Rem>
Niciun comentariu:
Trimiteți un comentariu