More and more people are hesitant to use the expression QED at the end of a demonstration.
Regarding problem E:17017 from GMB 10/2024.
In translation:Solution CiP
Due to the dimensions given in the problem it is convenient to choose DC=p and AB=6\cdot m, hence AD=3 \cdot p,\;BE=AE=3\cdot m,\;BC=2 \cdot m.
Then, in the obvious isosceles triangle BCC' the bisector of angle at vertex B is also the altitude, so BD \perp CC'. From (1) it then follows BD \perp DE.
QED
\blacksquare
Remark CiP
A more computational solution uses the Law of Cosines.
In \Delta ABC\;: \quad cos\; C=\frac{CB^2+CA^2-AB^2}{2\cdot CB \cdot CA}=\frac{4m^2+16p^2-36m^2}{2\cdot 2m\cdot 4p}=\frac{p^2-2m^2}{mp}
and in \Delta BCD\;:\quad BD^2=CB^2+CD^2-2\cdot CB \cdot CD \cdot cos\;C=
=4m^2+p^2-2 \cdot 2m \cdot p \cdot \frac{p^2-2m^2}{mp}=4m^2+p^2-4(p^2-2m^2) so
BD^2=12m^2-3p^2 \tag {2}
Again in \Delta ABC\;:\quad cos\;A=\frac{AB^2+AC^2-BC^2}{2\cdot AB \cdot AC}=\frac{36m^2+16p^2-4m^2}{2\cdot 6m \cdot 4p}=\frac{p^2+2m^2}{3mp}
and in \Delta ADE\;: \quad DE^2=AD^2+AE^2-2\cdot AD \cdot AE \cdot cos\;A=
=9p^2+9m^2-2\cdot 3p \cdot 3m \cdot \frac{p^2+2m^2}{3mp}=9p^2+9m^2-6(p^2+2m^2) so
DE^2=3p^2-3m^2 \tag{3}
From (2) and (3) it result
BD^2+DE^2=(12m^2-3p^2)+(3p^2-3m^2)=9m^2=BE^2
hence by Converse of Pythagorean Theorem the angle between sides BD and DE is a right angle.
<end Rem>
Niciun comentariu:
Trimiteți un comentariu