Loading web-font TeX/Math/Italic

joi, 16 ianuarie 2025

Vi er ikke alle så forskjellige, heldigvis... Problem E:17 053

          From GMB 11/2024 on page 650, proposed for 8th grade, author Constantin NICOLAU, Curtea_de_Argeș. In translation:

          "Let x,\;y,\;z\; be nonzero real numbers, such that x+y+z=24\; and

             xy+yz+zx=192.\;  Calculate \frac{x^4}{y}+\frac{y^4}{z}+\frac{z^4}{x}."


ANSWER CiP

1 536     (x=y=z=8)

                    Solution CiP

          From (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx) we obtain

24^2=x^2+y^2+z^2+2 \cdot 192

\Rightarrow\;\; x^2+y^2+z^2=576-384=192 so
x^2+y^2+z^2=xy+yz+zx. \tag{1}

But (1)\;\Leftrightarrow\;\;2\cdot x^2+2\cdot y^2+2\cdot z^2-2xy-2yz-2zx=0\;\Leftrightarrow

\Leftrightarrow\;\;(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0\;\Leftrightarrow

\Leftrightarrow\;\;(x-y)^2+(y-z)^2+(z-x)^2=0\; and this is possible in real numbers (being a sum of non-negative terms) only if x-y=0=y-z=z-x. Therefore x=y=z; moreover x=y=z=\frac{x+y+z}{3}=\frac{24}{3}=8.

     We then obtain \frac{x^4}{y}+\frac{y^4}{z}+\frac{z^4}{x}=3\cdot x^3=3\cdot 8^3=1536.

\blacksquare


Niciun comentariu:

Trimiteți un comentariu