Nu mai stiu
Dupa cum xice pe coperta
(to be continue)
In the recent issue of the Exercise Supplement (aka SGM) he proposed the Problem S:E25.199. The problem statement is :
"Consider $\Delta ABC$ a triangle such that $\measuredangle A=2\measuredangle C$.
Prove that $\frac{AB}{BC}=\frac{1}{2\cos C}.$
Neculai STANCIU, Buzău"
Solution CiP
We construct $AD$ - the bisector of angle $\widehat{BAC}$. We have
$$\measuredangle CAD=\measuredangle BAD=\frac{\measuredangle BAC}{2}=\measuredangle C$$
We now construct $BE\parallel AD,\;E\in AC$. We have for the angles formed with the secant $AB$ that
$\measuredangle BAD=\measuredangle ABE=\measuredangle C \tag{1}$
and the exterior angle $\widehat{BAC}$ of triangle $\Delta ABE$ shows us that
$\measuredangle BAC=\measuredangle ABE+\measuredangle AEB\Leftrightarrow 2\measuredangle C\overset{(1)}{=}\measuredangle C+\measuredangle AEB\Rightarrow \measuredangle AEB=\measuredangle C$
From all the angles equal to $C$ in the figure, we see that we have the isosceles triangles $BAE$ and $CBE$, soWe have on my Page, at No. 6, the Identity
$\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\frac{1}{\sqrt{3}}$
It is equivalent to $\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\tan30^{\circ}$ or else
$$\tan20^{\circ}\cdot \tan30^{\circ}\cdot \tan40^{\circ}=\tan10^{\circ} \tag{1}$$
Let's consider the equation
$$ \tan x\cdot \tan\frac{3x}{2}\cdot \tan 2x=\tan \frac{x}{2}\tag{2}$$
(1) shows that $x=20^{\circ}$ is a solution for (2).
The problem of completely solving this equation remains open for now.
We will solve the following trigonometric equation here :
$$\tan(30^{\circ}-x)\cdot \tan(30^{\circ}+x)=\frac{\tan x}{\sqrt{3}} \tag{1}$$
I first mentioned it in the Post here. There we also showed that the equation (1) is equivalent to the equation
$$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0,\;\;t=\tan x \tag{2}$$
ANSWER CiP
$$x_k^{\circ}=20^{\circ}+k\cdot 60^{\circ},\;\;k\in\mathbb{Z} \tag{3}$$
Solution CiP
The calculation has already been done, but we are presenting it for convenience.
$(1)\overset{t=\tan x}{\Leftrightarrow} t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0\Leftrightarrow \sqrt{3}=\frac{3t-t^3}{1-3t^2}\Leftrightarrow$
$\Leftrightarrow \sqrt{3}=\frac{3\cdot \tan x-\tan^3x}{1-3\cdot \tan^2x}\Leftrightarrow \tan 60^{\circ}=\tan 3x\Leftrightarrow 3x=60^{\circ}+k\cdot 180^{\circ},\;\;k\in \mathbb{Z}$
From here we get the answer (3)
$\blacksquare$
Remark CiP It all started with solving the first equation from No. 6 on Page here. Now, after we have solved the equation (1) (see also the Post from September 3, 2025), we can write the identities :
$$\frac{\tan10^{\circ}\cdot \tan50^{\circ}}{\tan20^{\circ}}=\frac{1}{\sqrt{3}}\tag{4}$$
$$\frac{\tan10^{\circ}\cdot \tan70^{\circ}}{\tan40^{\circ}}=\frac{1}{\sqrt{3}}\tag{5}$$
$$\frac{\tan50^{\circ}\cdot \tan70^{\circ}}{\tan80^{\circ}}=\frac{1}{\sqrt{3}}\tag{6}$$
But (4), considering that $\frac{1}{\tan20^{\circ}}=\cot20^{\circ}$, is exactly the first identity from No. 6. Seeking to express all quantities as tangents of angles not exceeding $45^{\circ}$, we further have $\frac{\tan10^{\circ}\cdot \tan50^{\circ}}{\tan20^{\circ}}=\frac{\tan10^{\circ} \cdot \color{Red}{\cot40^{\circ}}}{\tan20^{\circ}}=\frac{\tan10^{\circ}\cdot \color{Red}{\frac{1}{\tan40^{\circ}}}}{\tan20^{\circ}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\frac{1}{\sqrt{3}}$
which is the second entity from the aforementioned No. 6.
Doing the same thing with (5) :
$\frac{1}{\sqrt{3}}=\frac{\tan10^{\circ}\cdot \color{Red}{\cot20^{\circ}}}{\tan40^{\circ}}=\frac{\tan10^{\circ}\cdot \color{Red}{\frac{1}{\tan20^{\circ}}}}{\tan40^{\circ}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan{40^{\circ}}}$
and with (6) :
$\frac{1}{\sqrt{3}}=\frac{\color{Red}{\cot40^{\circ}\cdot \cot20^{\circ}}}{\color{Red}{\cot10^{\circ}}}=\frac{\frac{1}{\tan40^{\circ}}\cdot \frac{1}{\tan20^{\circ}}}{\frac{1}{\tan10^{\circ}}}=\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}$
So the second of the identities in No. 6 is the most important.
Let's demonstrate it directly then. We will see that the pattern is the same.
$\frac{\tan10^{\circ}}{\tan20^{\circ}\cdot \tan40^{\circ}}=\frac{\frac{\sin10^{\circ}}{\cos10^{\circ}}}{\frac{\sin20^{\circ}}{\cos20^{\circ}}\cdot \frac{\sin40^{\circ}}{\cos40^{\circ}}}=\frac{8\cdot \sin10^{\circ}\cdot \cos20^{\circ}\cdot \cos40^{\circ}}{8\cdot \cos10^{\circ}\cdot \sin20^{\circ}\cdot \sin40^{\circ}}\tag{7}$
The numerator in (7) is $4\cdot \frac{\sin20^{\circ}}{\cos10^{\circ}}\cdot \cos20^{\circ}\cdot \cos40^{\circ}=\frac{1}{\cos10^{\circ}}\cdot 2\cdot \sin40^{\circ}\cdot \cos40^{\circ}=\frac{1}{\cos10^{\circ}}\cdot \sin80^{\circ}=1$
The denominator in (7) is $4\cdot \cos10^{\circ}\cdot(\cos20^{\circ}-\cos60^{\circ})=4\cos10^{\circ}\cdot \cos20^{\circ}-4\cos10^{\circ}\cdot \frac{1}{2}=$
$=2(\cos10^{\circ}+\cos30^{\circ})-2\cos10^{\circ}=2\cos10^{\circ}+2\cdot \frac{\sqrt{3}}{2}-2\cos10^{\circ}=\sqrt{3}$
So the final value in (7) is $\frac{1}{\sqrt{3}}$.
<end Rem>
We have discussed this issue before. We will discuss the similarities and differences with the current situation at the end.
Here we consider the problem :
Let $\tau$ be one of the roots of the equation
$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0 \tag{1}$
The other two roots are
$\tau_2=\frac{\sqrt{3}}{2}\cdot \tau^2-5\cdot \tau+\frac{\sqrt{3}}{2}\;,\;\;\tau_3=-\frac{\sqrt{3}}{2}\cdot \tau^2+4\cdot \tau+\frac{5\sqrt{3}}{2} \tag{2}$
SOLUTION CiP
From the fact that $\tau$ checks (1) we obtain some useful formulas in future calculations
$\tau^3=3\sqrt{3}\cdot \tau^2+3\cdot \tau -\sqrt{3} \tag{3}$
$\tau^4=30\cdot \tau^2+8\sqrt{3} \cdot \tau-9 \tag{4}$
$\frac{1}{\tau}=-\frac{\sqrt{3}}{3}\cdot \tau^2+3\cdot \tau+\sqrt{3} \tag{5}$
Indeed, $\tau^3-3\sqrt{3}\cdot \tau^2-3\cdot \tau +\sqrt{3}=0 \Rightarrow \tau^3=3\sqrt{3} \cdot \tau^2+3\cdot \tau-\sqrt{3}$, i.e. (3). Then $\tau^4=\tau \cdot \tau^3\overset{(3)}{=}$
$=\tau (3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})=3\sqrt{3}\cdot \tau^3+3\cdot \tau^2-\sqrt{3}\cdot \tau\overset{(3)}{=}3\sqrt{3}(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+3\cdot \tau^2-\sqrt{3}\cdot \tau=30\cdot \tau^2+8\sqrt{3}\cdot \tau-9$ i.e. (4). Finally, $\sqrt{3}=-\tau^3+3\sqrt{3}\cdot \tau^2+3\cdot \tau=\tau \cdot (-\tau^2+3\sqrt{3}\cdot \tau+3)\Rightarrow\frac{1}{\tau}=\frac{-\tau^2+3\sqrt{3}\cdot \tau+3}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot \tau^2+3\cdot \tau+\sqrt{3}$, i.e. (5).
From the first formula of Vieta $\tau_1+\tau_2+\tau_3=3\sqrt{3}$ we get
$$\tau_2+\tau_3=3\sqrt{3}-\tau \tag{6}$$
and from the third $\tau_1\cdot \tau_2\cdot \tau_3=-\sqrt{3}$ we deduce
$$\tau_2\cdot \tau_3=-\frac{\sqrt{3}}{\tau} \tag{7}$$
(6) and (7) show that $\tau_{2,3}$ are the roots of the quadratic equation
$t^2-(3\sqrt{3}-\tau) \cdot t-\frac{\sqrt{3}}{\tau}=0 \tag{8}$
Let's calculate its discriminant: $\Delta_2=(3\sqrt{3}-\tau)^2+\frac{4\sqrt{3}}{\tau}=$
$\overset{\color{Red}{!!!}}{=}27-6\sqrt{3}\cdot \tau+\tau^2+\frac{4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=\frac{\tau^4-6\sqrt{3}\cdot \tau^3+27\cdot \tau^2+4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=$
$\overset{(4)}{\underset{(3)}{=}}\frac{(30\cdot \tau^2+8\sqrt{3}\cdot \tau-9)-6\sqrt{3}(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+27 \tau^2+4\sqrt{3}\cdot \tau}{\color{Red}{\tau^2}}=\frac{3\cdot \tau^2-6\sqrt{3}\cdot \tau+9}{\color{Red}{\tau^2}}=\frac{(\sqrt{3}\cdot \tau-3)^{\color{Red}2}}{\color{Red}{\tau^2}}$
< Hallelujah, I got a perfect square !!! >
Let's do a little more calculation to make writing easier : $\pm\sqrt{\Delta_2}=\frac{\sqrt{3}\cdot \tau-3}{\tau}=$
$=(\sqrt{3}\cdot \tau-3)\cdot \frac{1}{\tau}\overset{(5)}{=}(\sqrt{3}\cdot \tau-3)\left (-\frac{\sqrt{3}}{3}\cdot \tau^2+3\cdot \tau+\sqrt{3}\right )=$
$=-\tau^3+\sqrt{3}\cdot \tau^2+3\sqrt{3}\cdot \tau^2-9\cdot \tau+3\cdot \tau-3\sqrt{3}=$
$\overset{(3)}{=}-(3\sqrt{3}\cdot \tau^2+3\cdot \tau-\sqrt{3})+4\sqrt{3}\cdot \tau^2-6\cdot \tau-3\sqrt{3}=\color{Blue}{\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3}}$
!!! Remember this expression !!!
With these, the equation (8) has the roots
$\tau_{2,3}=\frac{3\sqrt{3}-\tau \pm \sqrt{\Delta_2}}{2}=\frac{3\sqrt{3}-\tau \pm (\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3})}{2} \tag{9}$
from where we obtain the expressions (2).
$\blacksquare$
REMARKS CiP
1. In the calculation of $\Delta_2$ that follows immediately after the equation (8), I made a trick so that at least the denominator would be a perfect square. Then I was lucky enough !! Compare with the Post << Not only God does not help, but also Allah does not "put you in trouble">>.
If in (7) we had used (5), obtaining $\tau_2\cdot \tau_3=\tau^2-3\sqrt{3}\cdot \tau-3$, then for the equation (8) we would have had $\Delta_2=(3\sqrt{3}-\tau)^2-4(\tau^2-3\sqrt{3}\cdot \tau-3)=39+6\sqrt{3}\cdot \tau -3\cdot \tau^2.$ Seeing this expression of $\Delta_2$ we wondered, as we did in the Post How? can we recognize a perfect square??, "how the hell" can we notice - compare with (9) - that
$$\color{Blue}{39+6\sqrt{3}\cdot \tau-3\cdot \tau^2=(\sqrt{3}\cdot \tau^2-9\cdot \tau-2\sqrt{3})^2}$$
Problem NOT solved yet.
2. The theoretical part about when and how such a statement is possible was exposed in the Post "The Rational Expressions for Roots of Cubic Polynomial". There are some differences, but only apparent.
First of all, that the polynomial $f=X^3-3\sqrt{3}\cdot X^2-3\cdot X+\sqrt{3}$ is not in $\mathbb{Q}[X]$ but in $\mathbb{Q}(\sqrt{3})[X].$
Then we need to make sure that the polynomial $f$ is irreducible. Maybe this is not that important, and I don't have an immediate justification at hand.
Third, its discriminant must be a perfect square (see Proposition in the Post). From $f$ we obtain the depressed cubic by substitution $t=u+\sqrt{3}$, obtainig the polynomial $u^3-12\cdot u-8\sqrt{3}$. Its discriminant, the same as for $f$, is $-4p^3-27q^2=4\cdot12^3-27\cdot(64\cdot3)=1\;728$ so equal to $3\cdot 576=(24\sqrt{3})^2$, hence perfect square in $\mathbb{Q}(\sqrt{3})$.
<end REM's>
We are showing here what we have left from a post from yesterday. I was helped for this in the AOPS Forum.
The roots of the equation
$$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0 \tag{E} $$
are $\tan20^{\circ},\;\;\tan80^{\circ},\;\;\tan140^{\circ}$
Adapted Solution by CiP
$(E)\Leftrightarrow \sqrt{3}\cdot (1-3t^2)=3t-t^3 \Leftrightarrow \sqrt{3}=\frac{3t-t^3}{1-3t^2}\;\underset{t=\tan x}{=}\frac{3\cdot \tan x-\tan^3x}{1-3\cdot \tan^2x}=\tan (3x)$
so, taking the equality of the extreme terms, $3\cdot x=60^{\circ}+k\cdot 180^{\circ},\;\;k\in \mathbb{Z}$, hence $x_k=20^{\circ}+k\cdot 60^{\circ}$. Returning to the variable $t$, we have the roots
$t_1=\tan( 20^{\circ}+3k\cdot 60^{\circ})=\tan (20^{\circ}+k\cdot 180^{\circ})=\tan20^{\circ},$
$t_2=\tan(20^{\circ}+(3k+1)\cdot 60^{\circ})=\tan(80^{\circ}+k\cdot 180^{\circ})=\tan80^{\circ}$
$t_3=\tan(20^{\circ}+(3k+2)\cdot 60^{\circ})=\tan(140^{\circ}+k\cdot 180^{\circ})=\tan140^{\circ}$.
$\blacksquare$
Remark Cip Vieta's formulas for the roots of the equation (E) lead to the equalities
$\tan20^{\circ}-\tan40^{\circ}+\tan80^{\circ}=3\sqrt{3}$
$\tan20^{\circ}\cdot \tan 40^{\circ}+\tan 40^{\circ}\cdot \tan 80^{\circ}-\tan 20^{\circ}\cdot \tan 80^{\circ}=3$
$\tan20^{\circ}\cdot \tan 40^{\circ}\cdot \tan80^{\circ}=\sqrt{3}$
<end Rem>
We will prove the trigonometric identity
$$\tan10^{\circ}\cdot \tan50^{\circ}\cdot \cot20^{\circ}=\frac{1}{\sqrt{3}} \tag{1}$$
The problem appears at Solutions in GMB 3/2005, number O:1063, page 132. You can find more about this magazine here and here.
Official Solution
Using that we have
$\sin50^{\circ}=\cos(90^{\circ}-50^{\circ})=\cos40^{\circ},\;\;\cos10^{\circ}=\sin(90^{\circ}-10^{\circ})=\sin80^{\circ}$
and $\cos50^{\circ}=\sin(90^{\circ}-50^{\circ})=\sin40^{\circ}$ we obtain
$\tan10^{\circ}\cdot \tan50^{\circ}\cdot \cot20^{\circ}=\frac{\sin10^{\circ}}{\cos10^{\circ}} \cdot \frac{\sin50^{\circ}}{\cos50^{\circ}} \cdot \frac{\cos 20^{\circ}}{\sin20^{\circ}}=\frac{\sin10^{\circ}\cdot \cos40^{\circ}\cdot \cos20^{\circ}}{\sin80^{\circ}\cdot \sin40^{\circ}\cdot \sin20^{\circ} } \tag{2}$
Up in (2) we have, from $\sin20^{\circ}=2\cdot \sin10^{\circ}\cdot \cos10^{\circ}$ if we replace $2\cdot \sin10^{\circ}$ :
$8\cdot \sin10^{\circ}\cdot \cos20^{\circ}\cdot \cos40^{\circ}=\frac{4\cdot \sin20^{\circ}\cdot \cos20^{\circ}\cos40^{\circ}}{ \cos10^{\circ}}=\frac{2\cdot \sin40^{\circ}\cdot \cos40^{\circ}}{\cos10^{\circ}}=\frac{\sin80^{\circ}}{\cos10^{\circ}}=1.$
Down in (2) we have, using $2\sin u\sin v=\cos(v-u)-\cos(v+u)$, replacing $\sin80^{\circ}=\cos10^{\circ}$, and using $2\cos u \cos v=\cos(v-u)+\cos(v+u)$
$8\cdot \sin20^{\circ}\cdot \sin40^{\circ}\cdot \sin80^{\circ}=4(\cos20^{\circ}-\cos60^{\circ})\cdot \cos10^{\circ}=$
$=4\cdot \cos20^{\circ}\cdot \cos10^{\circ}-4\cdot \frac{1}{2}\cdot \cos10^{\circ}=2(\cos10^{\circ}+\cos30^{\circ})-2\cdot \cos10^{\circ}=$
$=2\cdot \cos10^{\circ}+2\cdot \frac{\sqrt{3}}{2}-2\cdot \cos10^{\circ}=\sqrt{3}$
These values entered in (2) give the answer.
$\blacksquare$
Just as "After the battle, everyone is a general", we will also provide a solution.
Solution CiP
Lemma CiP $t_1=\tan20^{\circ}$ is one of the roots of the equation
$$t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0 \tag{3}$$
Proof of Lemma
In the triple angle formula $\tan 3\theta=\frac{3\tan \theta-\tan^3 \theta}{1-3\tan^2 \theta}$ we substitute
$\theta=20^{\circ},\;\;t=\tan \theta$ and because $\tan3\theta=\tan 60^{\circ}=\sqrt{3}$, we have
$\frac{3t-t^3}{1-3t^2}=\sqrt{3}\Leftrightarrow\;3t-t^3=\sqrt{3}-3\sqrt{3}\cdot t^2\Leftrightarrow\;t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0$
that is (3).
qed Lemma$\square$
To prove (1), we successively transcribe it (1)$\;\Leftrightarrow$
$\Leftrightarrow\;\frac{\tan(30^{\circ}-20^{\circ})\cdot \tan(30^{\circ}+20^{\circ})}{\tan20^{\circ}}=\frac{1}{\sqrt{3}}\Leftrightarrow\;\tan(30^{\circ}-20^{\circ})\cdot \tan(30^{\circ}+20^{\circ})=\frac{\tan20^{\circ}}{\sqrt{3}}$
and we have the equivalent problem:
Verify that the equation
$$\tan(30^{\circ}-x)\cdot \tan (30^{\circ}+x)=\frac{\tan x}{\sqrt{3}} \tag{4}$$
is satisfied by $x=20^{\circ}$.
The left side of (4) is written :
$$\frac{\sin(30^{\circ}-x) \cdot \sin(30^{\circ}+x)}{\cos(30^{\circ}-x)\cdot \cos(30^{\circ}+x)}\;\;\overset{2\sin u\sin v=\cos((v-u)-\cos(v+u)}{\underset{2\cos u\cos v=\cos(v-u)+\cos(v+u)}{=}}$$
$=\frac{\cos2x-\cos60^{\circ}}{\cos2x+\cos60^{\circ}}\;\;\underset{\tan x=t}{=}\;\;\frac{\frac{1-t^2}{1+t^2}-\frac{1}{2}}{\frac{1-t^2}{1+t^2}+\frac{1}{2}}=\frac{2-2t^2-1-t^2}{2-2t^2+1+t^2}=\frac{1-3t^2}{3-t^2}$
so we need to show that the equation $\frac{1-3t^2}{3-t^2}=\frac{t}{\sqrt{3}}$ is verified by $t=\tan20^{\circ}$. But the equation with the unknown $t$ is written equivalently
$\sqrt{3}-3\sqrt{3}\cdot t^2=3\cdot t-t^3\;\Leftrightarrow\;t^3-3\sqrt{3}\cdot t^2-3\cdot t+\sqrt{3}=0$
which the Lemma shows has the solution $t=\tan20^{\circ}$.
$\blacksquare$
Remark CiP By this we have NOT completely solved the equation (4) nor what are the other two roots of the equation (3).
<end Rem>
Bubble is a comic character. In Romanian, his name also has a trivial connotation.
Everyone knows that multiplication is distributive over addition...
$$a\cdot (b+c)=a\cdot b+a\cdot c \tag{$\cdot$ / +}$$
Here we imply a certain "priority" of multiplication over addition, so as not to write excessively pedantically $a\cdot (b+c)=(a\cdot b)+(a\cdot c)$.
What if addition were distributive to multiplication ?
A very narrow-minded math teacher would compare a student who thinks like this to Bubble. This would be written
$$a+b\cdot c=(a+b)\cdot (a+c) \tag{+/$\cdot$}$$
or, excessively pedantically, like this $a+(b\cdot c)=(a+b)\cdot (a+c).$
Let's not forget that it is possible for two operations to be mutually distributive of each other e.g. in the case of Boolean algebras.
I thought about a similar situation when I was developing initial assessment tests. I gave a problem like this to 8th graders :
Let $a,\;b,\;c$ be real numbers that satisfy
$a+b+c=1 \tag{1}$
Prove that $a+b\cdot c=(a+b)(a+c) \tag{2}$
There are many ways to demonstrate this, from a complete lack of reaction to the statement, to the most complicated calculations. Which? would be the shortest, and therefore most elegant, demonstration?? I would say that this would be :
$a+b\cdot c=a\cdot 1+bc \underset{(1)}{=}a(a+b+c)+bc=a^2+ab+ac+bc=a(a+b)+c(a+b)=(a+b)(a+c)$
The problem in the image is related to the same context.
(I don't think there's any need for translation of E : 6134*.) "I. SAFTA, Pitești" is a well-known name in the field of problem-solving.Solution CiP
$1-ab-bc-ca\overset{(1)}{=}(a+b+c)^2-ab-bc-ca=a^2+b^2+c^2=ab+bc+ca=$
$=\frac{a^2+2ab+b^2}{2}+\frac{b^2+2bc+c^2}{2}+\frac{c^2+2ca+a^2}{2}=$
$=\underline{\frac{(a+b)^2}{2}+\frac{(b+c)^2}{2}+\frac{(c+a)^2}{2}}=$
$\overset{a+b=1-c}{\underset{and \;the\; others}{=}}\frac{(1-c)^2}{2}+\frac{(1-a)^2}{2}+\frac{(1-b)^2}{2}=\underline{\left (\frac{1-c}{\sqrt{2}}\right )^2+\left ( \frac{1-a}{\sqrt{2}}\right )^2+\left( \frac{1-b}{\sqrt{2}}\right )^2}$
$\blacksquare$