Answer: NOT TOO MUCH
Let's take the first problem from a book.
Page 21, Chapter 1 EQUALITIES, Section 1.1 Equalities of one complex variable, Paragraph 1.A, Problem #1 (in translation)
"Let $z\in\mathbb{C}$ such that $z^2=-3+4\imath$. Calculate:
a) $A=z^2+\bar z^2;$
b) $B=\left | z-\frac{1}{\bar z } \right |;$
c) $C=z+\frac{1}{\bar z};$
d) $D=Re\;z+Im\;z.$"
ANSWER CiP
A. $-6$ ; B. $\frac{4\sqrt{5}}{5}$ ; C. $\pm\frac{6}{5}(1+2\imath)$ ; D. $\pm 3$.
In reality $z=\pm(1+2\imath)$
Solution CiP
Niciun comentariu:
Trimiteți un comentariu