We will further specify the relationships between the barycentric coordinates of three points on a line, which appear in the Post here. The notations are slightly modified.
Let $X,\;Y,\;Z$ be three collinear points. The following relations hold :
$\frac{\overline{XY}}{\overline{XZ}}=r\;\tag{1.1}$
$\overrightarrow{OY}=(1-r)\overrightarrow{OX}+r\overrightarrow{OZ}\;\tag{1.2}$
$Y=(1-r)X+rZ\;\tag{1.3}$
and the writing of (1.2) $\overrightarrow{OY}=r\overrightarrow{OZ}+(1-r)\overrightarrow{OX}$ also says that
$\frac{\overline{ZY}}{\overline{ZX}}=1-r\;\tag{1.4}$
$\frac{\overline{XZ}}{\overline{XY}}=\frac{1}{r}\;\tag{2.1}$
$\overrightarrow{OZ}=\frac{1}{r}\overrightarrow{OY}+(1-\frac{1}{r})\overrightarrow{OZ}\;\tag{2.2}$
$Z=\frac{1}{r}Y+(1-\frac{1}{r})X\;\tag{2.3}$
$\frac{\overline{YZ}}{\overline{YX}}=1-\frac{1}{r}\;\tag{2.4}$
$\frac{\overline{YX}}{\overline{YZ}}=-\frac{r}{1-r}\;\tag{3.1}$
$\overrightarrow{OX}=\frac{1}{1-r}\overrightarrow{OY}-\frac{r}{1-r}\overrightarrow{OZ}\;\tag{3.2}$
$X=\frac{1}{1-r}Y-\frac{r}{1-r}Z\;\tag{3.3}$
$\frac{\overline{ZX}}{\overline{ZY}}=\frac{1}{1-r}\;\tag{3.4}$
Niciun comentariu:
Trimiteți un comentariu