"Gazeta Matematika. Meşğuliyetlernen qoşma" 10/2025 sanlı mecmuasından alındı, 10 saife.
To further practice vector calculus, consider the problem (in translation):
"Consider the parallelogram $ABCD$ and the points $M\in AB,\; N \in AC$
such that $\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB},\;\; \overrightarrow{AN}=\frac{1}{5}\overrightarrow{AC}$. Express the vectors $\overrightarrow{DN},\; \overrightarrow{MN}$
in terms of the vectors $\overrightarrow{AB}$ and $\overrightarrow{AD}$ , and then show that
the points $D,\; N,\; M$ are collinear.
No author."
We will use formulas from the February 20, 2024 Post "Barycentric coordinate on the Straight Line".
Figure according to the statement. The green line $k$ is a suggestion of the conclusion..png)
ANSWER CiP
See (1) and (3)
$$\overrightarrow{DM}=\frac{5}{4}\overrightarrow{DN}=5\overrightarrow{NM}$$
Solution CiP
Let us first consider the point $M$. From $\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}\;\;\Leftrightarrow\;\;\frac{\overline{AM}}{\overline{AB}}=\frac{1}{4}$, it
follows by the Corollary to the LEMMA $\overrightarrow{DM}=\frac{3}{4}\overrightarrow{DA}+\frac{1}{4}\overrightarrow{DB}$ which is further equal to
$\frac{3}{4}(-\overrightarrow{AD})+\frac{1}{4}(\overrightarrow{DA}+\overrightarrow{AB})=-\frac{3}{4}\overrightarrow{AD}-\frac{1}{4}\overrightarrow{AD}+\frac{1}{4}\overrightarrow{AB}$ so
$$\overrightarrow{DM}=\frac{1}{4}\overrightarrow{AB}-\overrightarrow{AD} \tag{1}$$
From $\overrightarrow{AN}=\frac{1}{5}\overrightarrow{AC}\;\;\Leftrightarrow\;\;\frac{\overline{AN}}{\overline{AC}}=\frac{1}{5}$ it also results $\overrightarrow{DN}=\frac{4}{5}\overrightarrow{DA}+\frac{1}{5}\overrightarrow{DC}$ so$$\overrightarrow{DN}=\frac{1}{5}\overrightarrow{AB}-\frac{4}{5}\overrightarrow{AD} \tag{2}$$
Finally
$$\overrightarrow{MN}=-\frac{1}{20}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AD}. \tag{3}$$
From (1), (2) and (3) we observe the equations $\overrightarrow{DM}=\frac{5}{4}\overrightarrow{DN}=5\overrightarrow{NM}$, and it results that the points $D,\;N,\;M$ are collinear.
$\blacksquare$



Niciun comentariu:
Trimiteți un comentariu