It's problem E : 17 361 in the picture.
In translation : "E:17361. Solve the equation $[x]=\sqrt{\{x\}\cdot (x+1)}$ in the set of
real numbers.
[Author] Ionuţ ALEXUC Timişoara"
Remark CiP : No matter how often they are used, the notations $\{x\},\;[x]$ no longer have any presentation. : {x} is fractional part and [x] is the integer part of the real number x.
In my answer S means the set of solutions to the given equation. The problem is proposed for 7th grade (students aged 12-14).
ANSWER CiP
$S=\{0,\;\sqrt{2}\}$
Solution CiP
The domain on which the equation is defined is the interval $x\in [-1,\;+\infty)$. (Because $\{x\}\geqslant 0$)
But if $x<0$ , then $[x]\leqslant -1$, so strictly negative and then the equation cannot have such solutions. It remains that $x\geqslant 0$.
For $0\leqslant x<1$ we have $[x]=0$, and how $x+1\neq 0$ it must $\{x\}=0$, so $x=0$.
For $x\geqslant 1$ , from $x-1<[x]\leqslant x\;\Rightarrow\;\;x-1<\sqrt{\{x\}\cdot (x+1)}\leqslant x$
Hence $(x-1)^2<\{x\}\cdot (x+1)\;\;\Rightarrow\;\{x\}>\frac{(x-1)^2}{x+1}$. But $\{x\}<1$ so $1>\frac{(x-1)^2}{x+1}$
which is equivalent to $x+1>x^2-2x+1\;\Leftrightarrow\;3x>x^2\;\Leftrightarrow\;3>x$.
So we can have $[x]=1\;or\;[x]=2$.
If $[x]=1$ the equation is written $1=\sqrt{\{x\}\cdot (1+\{x\}+1)}$
$\Leftrightarrow\;1=\{x\}\cdot(\{x\}+2)\;\Leftrightarrow\;\{x\}^2+2\{x\}=1\;\Leftrightarrow\;(\{x\}+1)^2=2\;\Leftrightarrow\;\{x\}+1=\sqrt{2}.$
Hence $x=[x]+\{x\}=1+\{x\}=\sqrt{2}$.
If $[x]=2$ the equation is written $2=\sqrt{\{x\}\cdot (2+\{x\}+1)}$
$\Leftrightarrow\;4=\{x\}\cdot (\{x\}+3)\;\Leftrightarrow\;\{x\}^2+3\{x\}=4\;\Rightarrow\;\{x\}=1$ what is not possible.
Both values found for $x$ verify the equation.
$\blacksquare$

Niciun comentariu:
Trimiteți un comentariu