luni, 12 ianuarie 2026

Problem E : 17346

 From GMB 11/2025, page 554. In translation :

  "E:17346.  A natural number  $n$ gives when divided by 7 the remainder 4

                       and when divided by 9 the remainder 5. Find out what remainder is

                       obtained  when dividing  $n$  by 63.

 [Author] Ștefan GOBLEJ, Curtea de Argeș"


ANSWER CiP

32

                            Solution CiP

                    Let  $a$ and  $b$  be the quotients of the divisions of  $n$  by 7 and 9 respectively. Then

$n=7\cdot a+4,\;\;\;n=9\cdot b+5 \;\;\;\;\;a,\;b\in \mathbb{N}\tag{1}$

The equation  $7\cdot a+4=9\cdot b+5$   is equivalent to

$7\cdot a-9\cdot b=1\;\;\;\;\;\;a,b \in \mathbb{N} \tag{2}$

Noting that  $7\cdot 4-9\cdot 3=28-27=1$  , equation  (2)  has a particular solution  $a_0=4,\;b_0=3$.

So the general solution of this [linear Diophantine] equation is

$a=4+9\cdot k,\;\;b=3+7\cdot k,\;\;\;k \in \mathbb{N} \tag{3}$

Substituting the number  $a$  from (3) into (1) we obtain  $n=7\cdot (4+9\cdot k)+4$  so  

$$n=63 \cdot k+32$$

and from this it follows that the remainder of dividing the number  $n$  by 63 is 32.

$\blacksquare$


             Remark CiP  We could have thought like that too, without the theory of Diophantine equations :

$7\cdot a\overset{(2)}{=}1+9\cdot b=1+2\cdot b+7\cdot b\;\Rightarrow\; 7\mid 1+2\cdot b\;\Rightarrow\; 2\cdot b+1=7\cdot k_1,\;k_1 \in \mathbb{N}$. But in the equality  $2\cdot b=7\cdot k_1-1$  we must have  $k_1=odd\;number,\;\; k_1=2\cdot k+1$  so  $2\cdot b=7(2\cdot k+1)-1=14 \cdot k+6$  and from here we obtain  $b=7\cdot k+3$  that is precisely  (3).


          COPILOT's solution : 

We write the numbers that give remainder of 4 when divided by 7 :

4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, ...

We check which of them gives a remainder of 5 when divided by 9 :

4  mod 9  = 4

11  mod 9  = 2

18  mod 9  = 0

25  mod 9  =7

32  mod  9  =5  :  BINGO

(CiP note : After at most nine (=9) attempts, the result is definitely found, whether it exists or not.)

So the number that satisfies both conditions is  $n \equiv 32\;\;(mod\;63)$  , hence the remainder when dividing  $n$  by 63 is 32.

Niciun comentariu:

Trimiteți un comentariu