Topic 2. Find the real numbers $x$ for which
$3^x+3^{[x]}+3^{\{x\}}=4 \tag{E}$
($[x]$ and $\{x\}$ represent the integer part and the fractional part of the real
number $x$, respectively)
ANSWER CiP
$$x_1=1-log_32,\;x_2=log_3{11}-2log_32-1$$
Solution CiP
Because $x=[x]+\{x\}$ the equation is written equivalently
$3^{[x]} \cdot 3^{\{x\}}+3^{[x]}+3^{\{x\}}=4\;\;\;|+1\;\Leftrightarrow$
$\Leftrightarrow\;(3^{[x]}+1)\cdot (3^{\{x\}}+1)=5.$
We obtain from the above $3^{\{x\}}+1=\frac{5}{3^{[x]}+1}$ and because \frac $0\leqslant \{x\}<1$, therefore $2\leqslant 3^{\{x\}}+1<4$, we must have
$$2\leqslant \frac{5}{3^{[x]}+1}<4.$$
The last inequalities imply
$\frac{1}{4}<3^{[x]}\leqslant \frac{3}{2}$
and because $[x]\in \{\dots,-2,\;-1,\;0,\;1,\;\dots\}$, it results $[x]=0$ or $[x]=-1$.
If $[x]=0$, then $\{x\}=x$, and from (E) we obtain $3^x+1+3^x=4$ so $3^x=\frac{3}{2}$, hence $x=log_3\left ({\frac{3}{2}}\right )=log_33-log_32=1-log_32.$
If $[x]=-1$, then $\{x\}=x+1$, and from (E) we obtain $3^x+\frac{1}{3}+3\cdot 3^x=4$ so $3^x=\frac{11}{12}$, hence $x=log_3 \left (\frac{11}{12} \right )=log_3{11}-log_3{(2^2\cdot 3)}=log_3{11}-2log_32-1$.
Both values found for $x$ verify equation (E).
$\blacksquare$
Official Solution
It is shown that if $x\geqslant 1$ or if $x<-1$ then there are NO solutions.
It remains to study the cases $x\in [0,1)$, when $[x]=0$, and $x\in [-1,0)$, when $[x]=-1$, and find, as with us, the answer.
Niciun comentariu:
Trimiteți un comentariu