" S:E25.67. Knowing that $x+\frac{1}{x}=7$, calculate $\frac{1}{x}-\frac{1}{x-7}.$"
ANSWER CiP
$$\frac{1}{x}-\frac{1}{x-7}=7$$
Solution CiP
$x+\frac{1}{x}=7\;\Leftrightarrow\;x^2-7x+1=0 \tag{1}$
Now
$$\frac{1}{x}-\frac{1}{x-7}\underset{(1)}{=}7-x-\frac{1}{x-7}=7-\frac{x^2-7x+1}{x-7}\underset{(1)}{=}7-\frac{0}{x-7}=7$$
$\blacksquare$
Remark CiP
The question is whether there are other expressions like this, $\frac{1}{x+m}+\frac{n}{px+q}$ which can be calculated from the given condition $x+\frac{1}{x}=7.$
Niciun comentariu:
Trimiteți un comentariu