This is problem E:17125, from GMB 2/2025, proposed for 6th grade. In translation
"Determine the prime numbers $p\geqslant 5$ for which 156 is written as the sum of
three natural numbers, directly proportional to 2,3 and $p$."
(Marius BURTEA, Alexandria)
ANSWER CiP
$p=7\:\;:\;26+39+91=156;$
$p=47\;:\;6+9+141=156;$
$p=73\;:\;4+6+146=156:$
$p=151:\;2+3+151=156.$
Solution CiP
$\frac{a}{2}=\frac{b}{3}=\frac{c}{p}=\frac{a+b+c}{p+5}=\frac{156}{p+5},\;\;a,b,c \in \mathbb{N}$.
From the above we obtain
$a=\frac{312}{p+5},\;\;b=\frac{468}{p+5},\;\;c=\frac{156p}{p+5}=\frac{156p+780-780}{p+5}=156-\frac{780}{p+5}.$
For the numbers $a,\;b,\;c$ above to be natural, $p+5$ must divide all the numbers 312, 468, 780. So $p+5$ must divide their greatest common divisor, that is
$p+5 \mid gcd(312,468,780)=156 \tag{D}$.
Given that $p\geqslant 5$ is a prime number, and that $p+5$ is an even number, among the numbers that verify condition (D), we choose
$p+5 \in \{12,\;26,\;52,\;78,\;156\}.$
Therefore $p\in \{7,\;21,\;47,\;73,\;151\}$ from which we eliminate the inconvenient value 21.
$\blacksquare$
Niciun comentariu:
Trimiteți un comentariu