Strange juxtaposition of two issues in SGMB 3/2025
In translation:Let's assume that $a\neq b$. Then, from the first two of the equalities (E), we get
$0<\frac{\sqrt{a}}{b+c}=\frac{\sqrt{b}}{a+c}=\frac{\sqrt{a}-\sqrt{b}}{(b+c)-(a+c)}=\frac{\sqrt{a}-\sqrt{b}}{b-a}=-\frac{\sqrt{a}-\sqrt{b}}{a-b}=$
$=-\frac{\sqrt{a}-\sqrt{b}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=-\frac{1}{\sqrt{a}+\sqrt{b}}<0$
but this is ABSURD.
So $a=b$, and therefore from the equalities (E) there remains
$$\frac{\sqrt{a}}{a+c}=\frac{\sqrt{c}}{2\cdot a}$$
Assuming now that $c\neq a$, the above results in
$0<\frac{\sqrt{a}}{a+c}=\frac{\sqrt{a}-\sqrt{c}}{(a+c)-2a}=-\frac{\sqrt{a}-\sqrt{c}}{a-c}=-\frac{1}{\sqrt{a}+\sqrt{c}}<0$
this is again ABSURD. So $c=a=b$.
QED $\blacksquare$
Niciun comentariu:
Trimiteți un comentariu