I don't expect C. Ionescu-Țiu to show much logic in His Problems. Here is Problem E:6061 from the magazine in the picture.
I have published more about this issue of the Magazine elsewhere.In translation: "E:6061*. Consider the real and positive numbers $a,\;b,\;c,\;d$ such
that $a+b=c+d$. Show that:
1). If $ab>cd$ then $a^2+b^2<c^2+d^2$ and the converse.
2). If $ab>cd$ then $|a-b|<|c-d|$.
3). If $a^2+b^2<c^2+d^2$ then $|a-b|<|c-d|$ and the converse."
Solution CiP (an improvised solution, at the school level)
Let us remember that everywhere in what follows holds the equation:
$a+b=c+d \tag{1}$
1). Direct implication: $ab>cd\;\Rightarrow\;a^2+b^2<c^2+d^2$
(1)$\;\Rightarrow\;\;(a+b)^2=(c+d)^2$
$\Rightarrow\;\;a^2+b^2+2\cdot ab=c^2+d^2+2\cdot cd$
$\Rightarrow\;\;a^2+b^2-c^2-d^2=2\cdot (cd-ab)$
and from hypothesis $ab>cd$ it follows $cd-ab<0$, so $a^2+b^2-c^2-d^2<0$, or equivalently : $a^2+b^2<c^2+d^2$.
qed
Converse implication : $a^2+b^2<c^2+d^2\;\Rightarrow\;ab>cd$
$a^2+b^2<c^2+d^2\;\;\Rightarrow\;\;-a^2-b^2>-c^2-d^2\;\;\underset{(1)}{\Rightarrow}$
$\Rightarrow\;\;(a+b)^2-a^2-b^2>(c+d)^2-c^2-d^2\;\;\Leftrightarrow\;\;2\cdot ab>2\cdot cd\;\;\Leftrightarrow\;\;ab>cd$
qed
Remark CiP Based on the equation
$a^2+b^2-c^2-d^2=2\cdot (cd-ab)$
we have the logical equivalence
$a^2+b^2-c^2-d^2<0\;\;\;\Leftrightarrow\;\;\;cd-ab<0$
and the statement "1)" is obtained immediately.
<end Rem>
2). Implication: $ab>cd\;\;\Rightarrow\;\;|a-b|<|c-d|$
$ab>cd\;\;\Rightarrow\;\;-4\cdot ab<-4\cdot cd\;\;\Rightarrow\;\;(a-b)^2-(a+b)^2<(c-d)^2-(c+d)^2\;\;\Rightarrow$
$\;\underset{(1)}{\Rightarrow}\;\;(a-b)^2<(c-d)^2\;\;\Rightarrow\;\;\sqrt{(a-b)^2}<\sqrt{(c-d)^2}\;\;\Leftrightarrow\;\;|a-b|<|c-d|$.
qed
Remark CiP
a) The converse is also valid: $|a-b|<|c-d|\;\;\Rightarrow\;\;ab>cd$
Because $|a-b|<c-d|\;\;\Rightarrow\;\;(a-b)^2<(c-d)^2\;\;\Rightarrow\;\;-(a-b)^2>-(c-d)^2\;\;\Rightarrow$
$\underset{(1)}{\Rightarrow}\;\;(a+b)^2-(a-b)^2>(c+d)^2-(c-d)^2\;\;\Leftrightarrow\;\;4\cdot ab>4\cdot cd$, &c...
b) As in the Remark from point 1), we can prove point 2) together with its converse, based on the equation
$(a-b)^2-(c-d)^2=4\cdot(cd-ab)$
<end Rem>
3). Direct implication: $a^2+b^2<c^2+d^2\;\;\Rightarrow\;\;|a-b|<|c-d|$
From $2a^2+2b^2<2c^2+2d^2\;\;\Rightarrow\;\;(a+b)^2+(a-b)^2<(c+d)^2+(c+d)^2\;\;\Rightarrow$
$\underset{(1)}{\Rightarrow}\;\;(a-b)^2<(c-d)^2\;\;\Rightarrow\;\;\sqrt{(a-b)^2}<\sqrt{(c-d)^2}\;\;\Leftrightarrow\;\;|a-b|<|c-d|$
qed
Converse implication: $|a-b|<|c-d|\;\;\Rightarrow\;\;a^2+b^2<c^2+d^2$
From the hypothesis $|a-b|<|c-d|$ follows immediately the inequality
$(a-b)^2<(c-d)^2 \tag{2}$
$\Rightarrow\;\;2a^2+2b^2-4ab<2c^2+2d^2-4cd\;\;\Rightarrow\;\;2(a^2+b^2-c^2-^2)<4ab-4cd=$
$=(a+b)^2-(a-b)^2-[(c+d)^2-(c-d)^2]\underset{(1)}{=}(c-d)^2-(a-b)^2\underset{(2)}{<}0.$
qed
Remark CiP Both implications, direct and converse, result at once from the equation
$2(a^2+b^2-c^2-d^2)=(c-d)^2-(a-b)^2$
<end Rem>
With this we solved the exercise, and something extra.
Final Remarks CiP
1. For the logical propositions:
$p : ab>cd$
$q : a^2+b^2<c^2+d^2$
$r : |a-b|<|c-d|$
we have the logical equivalents
$p\;\;\Leftrightarrow\;\;q\;\;\Leftrightarrow\;\;r$
2. Due to the symmetry in $a$ and $b$ on the one hand and in $c$ and $d$ on the other hand, we could assume from the beginning that $a\leqslant b$ and $c\leqslant d$. With this, the proposition $p$ is true $\Leftrightarrow\;\;ab\underset{(1)}{>}c(a+b-c)\;\;\Leftrightarrow\;\;c^2-c(a+b)+ab>0\;\;\Leftrightarrow\;\;(c-a)(c-b)>0\;\;\Leftrightarrow\;\;c\in (0,\;a)\cup (b,\;+\infty)$.
and similar for $d$, so ultimately we have on the real axis the ordering $0<c<a\leqslant b<d$, to which is added the condition that the segments with ends $a$ and $b$, respectively $c$ and $d$ have the same midpoint.
$\blacksquare$
I visited this Magazine, and the same author has a problem that is as... stupid as it gets. I can post a picture of it if I can. If not, I'm just as stupid.
RăspundețiȘtergereIt's Problem No.10 from, say, "Problems preparatory for IMO". What a shame !!
Please wait to see what this is about, if you are serious or just joking.
Ștergere