Answer: NOT TOO MUCH
Let's take the first problem from a book.
Page 21, Chapter 1 EQUALITIES, Section 1.1 Equalities of one complex variable, Paragraph 1.A, Problem #1 (in translation)
"Let $z\in\mathbb{C}$ such that $z^2=-3+4\imath$. Calculate:
a) $A=z^2+\bar z^2;$
b) $B=\left | z-\frac{1}{\bar z } \right |;$
c) $C=z+\frac{1}{\bar z};$
d) $D=Re\;z+Im\;z.$"
Do you see the mistakes ?
ANSWER CiP
A. $-6$ ; B. $\frac{4\sqrt{5}}{5}$ ; C. $\pm\frac{6}{5}(1+2\imath)$ ; D. $\pm 3$.
In reality $z=\pm(1+2\imath)$
Solution CiP
Let $z=x+\imath y$. From $-3+4\imath=z^2=(x+\imath y)^2=(x^2-y^2)+2xy \cdot \imath$
it follow $x^2-y^2=-3,\;\;2xy=4$ so $y=\frac{2}{x}\;\;and\;\;x^2-\frac{4}{x^2}=-3$. Hence
$x^2=1$ and therefore $z_{1,2}=\pm(1+2\imath).$
Regardless of the possible values for $z$, we have the calculations :
$A=z^2+\overline {z^2}=(-3+4\imath)+\overline {(-3+4\imath)}=(-3+4\imath)+(-3-4\imath)=-6;$
We then have $|z^2|=|-3+4\imath|=\sqrt{(-3)^2+4^2}=5=|z|^2=|\bar z|^2$ so on one side $|\bar z|=\sqrt{5}$, and
$B=\left | \frac{z\cdot \bar z-1}{\bar z} \right |=\left | \frac{|z|^2-1}{\bar z} \right |=\left | \frac{|z^2|-1}{\bar z} \right |=\left | \frac{5-1}{\bar z}\right |=\frac{4}{|\bar z|}=\frac{4}{\sqrt{5}};$
$C=\frac{z \cdot \bar z+1}{\bar z}=\frac{|z|^2+1}{\bar z}=\frac{5+1}{\bar z}=\frac{6\cdot z}{ \bar z \cdot z}=\frac{6z}{|z|^2}=\frac{6}{5}\cdot z\;\tag{1}$
Finally, we still need
$\bar z=\frac{5}{z}$ and $\frac{1}{z}=\frac{z}{-3+4\imath}$
to calculate $D=Re\;z+Im\;z=\frac{z+\bar z}{2}+\frac{z-\bar z}{2\imath}=\frac{z+\frac{5}{z}}{2}+\frac{z-\frac{5}{z}}{2\imath}=\frac{z^2+5}{2z}+\frac{z^2-5}{2\imath z}=$
$\overset{z^2=-3+4\imath}{=}\;\;\frac{2+4\imath}{2z}+\frac{-8+4\imath}{2\imath z}=\frac{1}{z}+\frac{2\imath}{z}+\frac{8\imath ^2}{2\imath z}+\frac{2}{z}=\frac{3+6\imath}{z}=$
$=3(1+2\imath) \cdot \frac{1}{z}=3(1+2\imath) \cdot \frac{z}{-3+4\imath}=3(1+2\imath)\cdot \frac{(-3-4\imath)z}{25}=\frac{3(5-10\imath)}{25}\cdot z=\frac{3}{5}(1-2\imath)\cdot z \tag{2}$
Substituting the values $z_{1,2}$ into (1) and (2) we obtain the answer.
$\blacksquare$
Remark CiP Compare with the official solution :