It is Problem S:E24.359 from SGMB magazine (12/2024 at page 8), proposed for 8th grade, by a well-known author.
In translation:
"Let x and y be nonzero natural numbers for which 13\mid (3x-2y). Show
that the fraction
\frac{31^{8(x+y)+1}}{x^2+y^2} is reducible."
This problem led me to make the Post here.
ANSWER CiP
The given fraction can always be simplified by 13
Solution CiP
Lemma 1 13\mid (3x-2y) \Rightarrow 13\mid (5x+y) and 13\mid (x-5y).
Proof of L1 We observe relationships:
2\cdot (5x+y)=13\cdot x-(3x-2y)\;\;;\;\;3\cdot (x-5y)=(3x-2y)-13 \cdot y.
From the hypothesis 13\mid (3x-2y) it then follows that
13 \mid 2\cdot (5x+y)\; and\; 13\mid 3\cdot (x-5y)
and, because (13\;,2)=1=(13\;,3), it must 13\mid (5x+y) \;and\; 13 \mid (x-5y).
qed_L1 \square
Remark CiP I found the property in the mentioned post. <end Rem>
Lemma 2 13\mid (3x-2y) \Rightarrow 13\mid (x^2+y^2).
Proof of L2 We have the equation, easy to verify by calculations
(5x+y)^2+(x-5y)^2=26 \cdot (x^2+y^2).\tag{1}
From the hypothesis 13\mid (3x-2y) we have, applying Lemma 1 :
13^2 \mid (5x+y)^2\;and\;13^2 \mid (x-5y)^2\;\;\overset{(1)}{\Rightarrow} 13^2\mid 26\cdot (x^2+y^2)\Rightarrow 13\mid 2\cdot(x^2+y^2)
and, because (13\;,2)=1 it must
13\mid (x^2+y^2). \tag{2}
qed_L2 \square
In the following equations the number k has different values, which we are not interested in:
31=13\cdot k+5\Rightarrow 31^2=31\cdot(13k+5)=13k+155=13k+12\cdot 13-1=13k-1\Rightarrow
\Rightarrow 31^3=31\cdot (13k-1)=13k-26-5=13k-5\Rightarrow 31^4=31\cdot(3k-5)=13k-12\cdot 13+1=13k+1.
For m=2(x+y) we obtain
31^{8(x+y)+1}-18=31^{4\cdot m+1}-18=31^{4\cdot m}\cdot 31-18=(31^4)^m\cdot 31-18=
=(13k+1)^m\cdot 31-18=(13k+1) \cdot 31-18=13k+31-18=13k+13=13\cdot k.
So the numerator of the fraction in the statement is divisible by 13. This together with (2) proves the answer.
\blacksquare