Let the sequences $(x_n)_{n\in \mathbb{Z}},\;(y_n)_{n\in \mathbb{Z}}$ be defined by the relations
\begin{cases}x_{n+1}=a\cdot x_n+b\cdot y_n\;\;\;\;(1)\\y_{n+1}=c \cdot x_n+d \cdot y_n\;\;\;\;\;(2) \end{cases}
To determine them, an "initial" value needs to be given, for example $x_0$ and $y_0$.
We show that we can write a recurrence relation for each of the sequences in (1), (2), surprisingly (or NOT ?) the same.
$$x_{n+2}=(a+d)\cdot x_{n+1}-(ad-bc)\cdot x_n\;\;;\;\;y_{n+2}=(a+d)\cdot y_{n+1}-(ad-bc)\cdot y_n \tag{3}$$
To determine exactly each of the sequences $(x_n)_{n\in \mathbb{Z}},\;(y_n)_{n\in\mathbb{Z}}$, two "initial" values need to be given, for example $x_0$ and $x_1$ &c.
Proof CiP (with the necessary clumsiness)
$x_{n+2}\;\overset{(1)}{\underset{\overbrace{n\to n+1}}{=}}\;a\cdot x_{n+1}+b\cdot y_{n+1}\overset{(2)}{=}\;a\cdot x_{n+1}+b\cdot ( c\cdot x_n+d\cdot y_n)=$
$=a\cdot x_{n+1}+bc\cdot x_n+bd\cdot y_n\;$
$\Rightarrow \;\;\;bd \cdot y_n=x_{n+2}-a\cdot x_{n+1}-bc\cdot x_n \tag{4}$
Later $d\cdot x_{n+1}\overset{(1)}{=}ad\cdot x_n+bd\cdot y_n \overset{(4)}{=}ad\cdot x_n+x_{n+2}-a\cdot x_{n+1}-bc\cdot x_n\;\;\Rightarrow$
$\Rightarrow\;\;\;x_{n+2}=(a+d)\cdot x_{n+1}-(ad-bc)\cdot x_n\;;$ the first formula (3) is proven.
From (2) written for $n+1$, it follows
$y_{n+2}-d\cdot y_{n+1}=c\cdot x_{n+1}\overset{(1)}{=}c\cdot(a\cdot x_n+b\cdot y_n)\;\overset{\underbrace{c\cdot x_n=from\;(2)}}{=}a\cdot (y_{n+1}-d\cdot y_n)+bc\cdot y_n=$
$=a\cdot y_{n+1}-(ad-bc)\cdot y_n$
and from the extreme equalities the second part of (3) results.
$\blacksquare$
Remark CiP The matrix $M=\begin{pmatrix}a&b\\c&d\\\end{pmatrix}$ that appears in (1)&(2) has the characteristic polynomial $P(\lambda)=\lambda^2-(a+d)\cdot \lambda+(ad-bc)$, which coincides with the characteristic polynomial of the recurrences (3).
<end Rem>
An example is shown in the images below. (In the second image, with the red color, I made the mistake of eliminating $x_n$ and obtained for $y_n$ a recurrence relation of order 3 - in formula (4) there. This turned out to be just an illusion...)
Did you mean to say that ?
RăspundețiȘtergereFrom $y_{n+1}=x_n+2y_n$ you get
$x_n=y_{n+1}-2y_n,\;\;x_{n+1}=y_{n+2}-2y_{n+1}$
and substitute in $x_{n+1}=2x_n+3y_n$ obtaining
$y_{n+2}-2y_{n+1}=2(y_{n+1}-2y_n)+3y_n$.
But this is $y_{n+2}=4y_{n+1}-y_n$.
It is NOT a 3rd order recurrence at all.
You're writing nonsense, boy.
Get some children's magazines from here, and learn more:
https://drive.google.com/drive/folders/1eMWXeHfHH3Tqrv6rcXtaSKPK4BhrHauL?usp=drive_link
Oho, vad ca e un comentariu de...Doi Lei !!
ȘtergereAnd by the way, a link is inserted correctly with the command \href{link}{text}
RăspundețiȘtergere$\href{https://ogeometrie-cip.blogspot.com/}{Uite\;asa\;Boulei}$
The recurrence relations in the first image
RăspundețiȘtergere$\begin{cases}x_{n+1}=2x_n+3y_n\\y_{n+1}=x_n+2y_n\\ \end{cases}$
along with the initial conditions $x_0=1,\;y_0=0$,
give all the integer solutions of the $\href{https://ogeometrie-cip.blogspot.com/2025/05/ecuatiile-pell.html}{Pell's\:equation}$
$$x^2-3y^2=1.$$
Or equivalently, from recurrence relations
$x_{n+2}=4x{n+1}-x_n,\;\;x_0=1,\;x_1=2\;\;\;and\;\;\;y_{n+2}=4y_{n+1}-y_n,\;y_0=0,\;y_1=1$
$x_{n+2}=4x_{n+1}-x_n,\;\;x_o=1,\;x_1=2\;\;\;and\;\;\;y_{n+2}=4y_{n+1}-y_n,\;y_0=0,\;y_1=1.$
$\href{https://drive.google.com/drive/folders/1eMWXeHfHH3Tqrv6rcXtaSKPK4BhrHauL?usp=drive_link}{You\;are\;still\;a\;great\;Ox\;!}$