duminică, 4 ianuarie 2026

LUDO // oder Mensch ärgere dich nich // Another calculation problem with Vectors

           The game known in Romania as "Don't Be Angry, Brother!" it's basically LUDO. There is also a German version, mentioned in the title. I would have liked to say "Don't Be Upset, Sister!", because alongside Problem S:L25.296 in Post here, there is also its sister, Problem S:L25.295, which I initially neglected.

In translation :

"Let the triangle  $ABC$  and the points  $M\in (AB),\; N\in (AC), \;P\in BC$

  be such that  $\overrightarrow{BC}=2\overrightarrow{CP},\;\frac{MA}{MB}=\frac{1}{2},\;\;and\;\;\frac{NC}{AC}=\frac{2}{5}.$

     a) Express the vectors  $\overrightarrow{AM},\;\overrightarrow{AN}$  and  $\overrightarrow{AP}$ in terms of the vectors  $\overrightarrow{AB}\;and\;\overrightarrow{AC}$.

     b) Express the vectors  $\overrightarrow{MN}$  and  $\overrightarrow{MP}$  in terms of the vectors  $\overrightarrow{AB}\;and\;\overrightarrow{AC}$.

 c) Show that the points  $M,\;N,\;P$  are collinear and determine the ratio  $\frac{MN}{MP}.$

No author"


ANSWER CiP


a)  $\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$

$\overrightarrow{AN}=\frac{3}{5}\overrightarrow{AC}$
$\overrightarrow{AP}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$

b)  $\overrightarrow{MN}=-\frac{1}{3}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}$
$\overrightarrow{MP}=-\frac{5}{6}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$

c)  $\overrightarrow{MN}=\frac{2}{5}\overrightarrow{MP}$
$\frac{MN}{MP}=\frac{2}{5}$



                         Solution CiP

          a) From  $\frac{MA}{MB}=\frac{1}{2}$  and  $M\in (AB)$  it follow  $\frac{\overline{MA}}{\overline{MB}}=\frac{-1}{2}$ and so  

$\frac{\overline{AM}}{\overline{AB}}=-\frac{\overline{MA}}{\overline{MB}-\overline{MA}}=-\frac{-1}{2-(-1)}=\frac{1}{3}$, hence  $\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}.$

From  $\frac{NC}{AC}=\frac{2}{5}$  and  $N\in (AC)$  it follow  $\frac{\overline{NC}}{\overline{AC}}=\frac{2}{5}$  so

  $\frac{\overline{AN}}{\overline{AC}}=\frac{\overline{AC}+\overline{CN}}{\overline{AC}}=\frac{\overline{AC}-\overline{NC}}{\overline{AC}}=\frac{5-2}{5}=\frac{3}{5}$,  hence  $\overrightarrow{AN}=\frac{3}{5}\overrightarrow{AC}$

Finally  $\overrightarrow{AP}=\overrightarrow{AC}+\overrightarrow{CP}=\overrightarrow{AC}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AC}+\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$.

The same answer can be obtained by observing that  $\frac{\overline{PB}}{\overline{PC}}=\frac{3}{1}$  and we apply the formulas (1.1) and (3.2)

  $\overrightarrow{AP}=\frac{1}{1-3}\overrightarrow{AB}-\frac{3}{1-3}\overrightarrow{AC}.$


          b)  $\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\frac{3}{5}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$  hence the answer.


     $\overrightarrow{MP}=\overrightarrow{AP}-\overrightarrow{AM}=\left (-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC} \right )-\frac{1}{3}\overrightarrow{AB}=-\frac{5}{6}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$


          c)  With the results from  b)  we have

$\overrightarrow{MN}=-\frac{1}{3}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}=\frac{2}{5} \cdot \left (-\frac{5}{6}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC} \right )=\frac{2}{5}\overrightarrow{MP}$

hence the points  $M,\;N,\;P$  are collinear and  $\frac{\overline{MN}}{\overline{MP}}=\frac{2}{5}.$

     The collinearity of points  $M,\;N,\;P$  also results from observing the  $\overrightarrow{AP}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}=-\frac{1}{2}\cdot 3\overrightarrow{AM}+\frac{3}{2}\cdot \frac{5}{3}\overrightarrow{AN}$  or,

$$\overrightarrow{AP}=\frac{5}{2}\overrightarrow{AN}-\frac{3}{2}\overrightarrow{AM}=\frac{1}{\frac{2}{5}}\overrightarrow{AN}+\left ( 1-\frac{1}{\frac{2}{5}}\right )\overrightarrow{AM}$$

to which we apply formulas  (1.1)  and  (2.2).

$\blacksquare$